【題目】如圖,在矩形ABCD中,點E、F在邊AD上,AF=DE,連接BF、CE.
(1)求證:∠CBF=∠BCE;
(2)若點G、M、N在線段BF、BC、CE上,且 FG=MN=CN.求證:MG=NF;
(3)在(2)的條件下,當∠MNC=2∠BMG時,四邊形FGMN是什么圖形,證明你的結(jié)論.
【答案】(1)見解析;(2)見解析;(3)四邊形FGMN是矩形,見解析
【解析】
(1)由“SAS”可證△ABF≌△DCE,可得∠ABF=∠DCE,可得結(jié)論;
(2)通過證明四邊形FGMN是平行四邊形,可得MG=NF;
(3)過點N作NH⊥MC于點H,由等腰三角形的性質(zhì)可證∠BMG=∠MNH,可證∠GMN=90°,即可得四邊形FGMN是矩形.
證明:(1)∵四邊形ABCD是矩形
∴AB=CD,∠A=∠D=90°,且AF=DE
∴△ABF≌△DCE(SAS)
∴∠ABF=∠DCE,且∠ABC=∠DCB=90°
∴∠FBC=∠ECB
(2)∵FG=MN=CN
∴∠NMC=∠NCM
∴∠NMC=∠FBC
∴MN∥BF,且FG=MN
∴四邊形FGMN是平行四邊形
∴MG=NF
(3)四邊形FGMN是矩形
理由如下:
如圖,過點N作NH⊥MC于點H,
∵MN=NC,NH⊥MC
∴∠MNH=∠CNH=∠MNC,NH⊥MC
∴∠MNH+∠NMH=90°
∵∠MNC=2∠BMG,∠MNH=∠CNH=∠MNC
∴∠BMG=∠MNH,
∴∠BMG+∠NMH=90°
∴∠GMN=90°
∴四邊形FGMN是矩形
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉(zhuǎn)過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是正方形ABCD的對角線BD上一點,PE⊥BC于E,PF⊥CD于F,連接EF,給出下列三個結(jié)論:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正確結(jié)論的序號是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△CDE都是等邊三角形,點E、F分別在AC、BC上,且EF∥AB.
(1)求證:四邊形EFCD是菱形;
(2)設CD=2,求D、F兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】臨近期末,歷史老師為了了解所任教的甲、乙兩班學生的歷史基礎知識背誦情況,從甲、乙兩個班學生中分別隨機抽取了20名學生來進行歷史基礎知識背誦檢測,滿分50分,得到學生的分數(shù)相關數(shù)據(jù)如下:
甲 | 32 | 35 | 46 | 23 | 41 | 49 | 37 | 41 | 36 | 41 |
37 | 44 | 39 | 46 | 46 | 41 | 50 | 43 | 44 | 49 |
乙 | 25 | 34 | 43 | 46 | 35 | 41 | 42 | 46 | 44 | 42 |
47 | 45 | 42 | 34 | 39 | 47 | 49 | 48 | 45 | 42 |
通過整理,分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
甲 | 41 | 41 | |
乙 | 41.8 | 42 |
歷史老師將乙班成績按分數(shù)段(,,,,,表示分數(shù))繪制成扇形統(tǒng)計圖,如圖(不完整)
請回答下列問題:
(1)_______分;
(2)扇形統(tǒng)計圖中,所對應的圓心角為________度;
(3)請結(jié)合以上數(shù)據(jù)說明哪個班背誦情況更好(列舉兩條理由即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,AB是⊙O的直徑,點P在AB的延長線上,弦CE交AB于點,連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖 1,在△ABC 中,∠ABC 的平分線 BF 交 AC 于 F, 過點 F 作 DF∥BC, 求證:BD=DF.
(2)如圖 2,在△ABC 中,∠ABC 的平分線 BF 與∠ACB 的平分線 CF 相交于 F,過點 F 作 DE∥BC,交直線 AB 于點 D,交直線 AC 于點 E.那么 BD,CE,DE 之間存在什么關系?并證明這種關系.
(3)如圖 3,在△ABC 中,∠ABC 的平分線 BF 與∠ACB 的外角平分線 CF 相交于 F,過點 F 作 DE∥BC,交直線 AB 于點D,交直線 AC 于點 E.那么 BD,CE,DE 之間存在什么關系?請寫出你的猜想.(不需證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com