如圖,經(jīng)過點B(-2,0)的直線y=kx+b與直線y=4x+2相交于點A(-1,-2),則不等式4x+2<kx+b<0的解集為   
【答案】分析:由圖象得到直線y=kx+b與直線y=4x+2的交點A的坐標(-1,-2)及直線y=kx+b與x軸的交點坐標,觀察直線y=4x+2落在直線y=kx+b的下方且直線y=kx+b落在x軸下方的部分對應(yīng)的x的取值即為所求.
解答:解:∵經(jīng)過點B(-2,0)的直線y=kx+b與直線y=4x+2相交于點A(-1,-2),
∴直線y=kx+b與直線y=4x+2的交點A的坐標為(-1,-2),直線y=kx+b與x軸的交點坐標為B(-2,0),
又∵當x<-1時,4x+2<kx+b,
當x>-2時,kx+b<0,
∴不等式4x+2<kx+b<0的解集為-2<x<-1.
故答案為-2<x<-1.
點評:本題考查了一次函數(shù)與一元一次不等式的關(guān)系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構(gòu)成的集合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、按要求畫圖:
(1)如圖,要從小河引水到村莊A,請設(shè)計并作出一條最佳路線;

(2)如圖,經(jīng)過點D作DE⊥AB于E,作DF∥CB交AB于點F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南通)如圖,經(jīng)過點A(0,-4)的拋物線y=
1
2
x2+bx+c與x軸相交于B(-2,0),C兩點,O為坐標原點.
(1)求拋物線的解析式;
(2)將拋物線y=
1
2
x2+bx+c向上平移
7
2
個單位長度,再向左平移m(m>0)個單位長度得到新拋物線,若新拋物線的頂點P在△ABC內(nèi),求m的取值范圍;
(3)設(shè)點M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,⊙O經(jīng)過點B、D、E,BD是⊙O的直徑,∠C=90°,BE平分∠ABC.
(1)試說明直線AC是⊙O的切線;
(2)當AE=4,AD=2時,求⊙O的半徑及BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南通)如圖,經(jīng)過點B(-2,0)的直線y=kx+b與直線y=4x+2相交于點A(-1,-2),則不等式4x+2<kx+b<0的解集為
-2<x<-1
-2<x<-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北碚區(qū)模擬)如圖,經(jīng)過點A(-2,0)的一次函數(shù)y=ax+b(a≠0)與反比例函數(shù)y=
k
x
(k≠0)的圖象相交于P、Q兩點,過點P作PB⊥x軸于點B.已知tan∠PAB=
3
2
,點B的坐標為(4,0).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)與y軸相交于點C,求四邊形OBPC的面積.

查看答案和解析>>

同步練習(xí)冊答案