如圖,在△ABC中,AB=AC,點(diǎn)F在AC上,F(xiàn)D⊥BC于D,DE⊥AB于E.若∠AFD=155°,則∠EDF的度數(shù)等于( )

A.45°
B.55°
C.65°
D.75°
【答案】分析:先根據(jù)等腰三角形等邊對等角的性質(zhì)得到∠B=∠C,利用等角的余角相等和已知角可求出∠EDB的數(shù),從而可求得∠EDF的度數(shù).
解答:解:∵AB=AC,
∴∠B=∠C,
∵FD⊥BC于D,DE⊥AB于E,
∴∠BED=∠FDC=90°,
∵∠AFD=155°,
∴∠EDB=∠CFD=180°-155°=25°,
∴∠EDF=90°-∠EDB=90°-25°=65°.
故選C.
點(diǎn)評:本題綜合考查等腰三角形,三角形外角性質(zhì)等知識.一般是利用等腰三角形的性質(zhì)得出有關(guān)角的度數(shù),進(jìn)而求出所求角的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案