【題目】如圖,平面直角坐標(biāo)系中,,,點(diǎn)軸的正半軸上,點(diǎn)軸正半軸上一動(dòng)點(diǎn),連接,以為邊長(zhǎng),在的右側(cè)作等邊.設(shè)點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為,則的函數(shù)關(guān)系式是________

【答案】

【解析】

連接BQ,過(guò)點(diǎn)QQEx軸于點(diǎn)E,先證明AOPABQ,由此可得ABQ60°,BQx,最后在Rt△QBE中,利用sin∠QBE即可求得

解:連接BQ,過(guò)點(diǎn)QQEx軸于點(diǎn)E,則點(diǎn)Q的縱坐標(biāo)為yQE,

,

AOB為等邊三角形,

AOAB∠OABABO60°,

∵△APQ為等邊三角形,

APAQ,PAQ60°,

∴∠PAQOAB,

∴∠OAPBAQ,

AOPABQ中,

AOPABQSAS),

∴∠ABQAOP60°,BQOPx,

∴∠QBE180°-ABQABO60°,

QEx軸,

QEB90°,

∴在Rt△QBE中,,

,

故答案為:x0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某款籃球架的示意圖,支架AC與底座BC所成的∠ACB65°,支架ABBC,籃球支架HEBC,且籃板DFHE于點(diǎn)E,已知底座BC1米,AH米,HF 米,HE1米.

1)求∠FHE的度數(shù);

2)已知該款籃球架符合國(guó)際籃聯(lián)規(guī)定的籃板下沿D距地面2.90米的規(guī)定,求DE的長(zhǎng)度.(參考數(shù)據(jù):sin65°≈0.91cos65°≈0.42,tan65°≈2.41,1.41

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形內(nèi)接于直徑為的圓,

1)①_

②四邊形的周長(zhǎng)最大值為_ ;

如圖2,延長(zhǎng)相交于點(diǎn),延長(zhǎng)相交于點(diǎn)與的積;

如圖3,連接請(qǐng)問在線段上是否存在點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,若存在,請(qǐng)證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+cab,c為常數(shù),a0,c0)的自變量x與函數(shù)值y的部分對(duì)應(yīng)值如表:

x

1

0

1

2

3

yax2+bx+c

p

t

n

t

0

有下列結(jié)論:①b0關(guān)于x的方程ax2+bx+c0的兩個(gè)根是03;③p+2t0④mam+b)≤﹣4acm為任意實(shí)數(shù)).其中正確結(jié)論的個(gè)數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售A、B兩種新型小家電,A型每臺(tái)進(jìn)價(jià)40元,售價(jià)50元,B型每臺(tái)進(jìn)價(jià)32元,售價(jià)40元,4月份售出A40臺(tái),且銷售這兩種小家電共獲利不少于800元.

1)求4月份售出B型小家電至少多少臺(tái)?

2)經(jīng)市場(chǎng)調(diào)查,5月份A型售價(jià)每降低1元,銷量將增加10臺(tái);B型售價(jià)每降低1元,銷量將在4月份最低銷量的基礎(chǔ)上增加15臺(tái).為盡可能讓消費(fèi)者獲得實(shí)惠,商場(chǎng)計(jì)劃5月份A、B兩種小家電都降低相同價(jià)格,且希望銷售這兩種小家電共獲利965元,則這兩種小家電都應(yīng)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,內(nèi)接于,的直徑,過(guò)點(diǎn)的切線交的延長(zhǎng)線于點(diǎn),上一點(diǎn),點(diǎn)分別位于直徑異側(cè),連接,,且

1)求證:

2)求證:;

3)過(guò)點(diǎn),垂足為點(diǎn),若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)三角形的兩個(gè)內(nèi)角αβ滿足α+2β=90°,那么我們稱這樣的三角形為“非常三角形”.

1)若△ABC是“非常三角形”,∠C90°,∠A=50°,則∠B=

2)如圖,△ABC中,AB=AC,D是邊BC上一點(diǎn),以BD為直徑的⊙O經(jīng)過(guò)點(diǎn)A,連結(jié)AD

①求證:△ADC為“非常三角形”.

②若sinB=,AB=8,弦AB上是否存在一點(diǎn)P,使得△BDP是“非常三角形”,若存在,請(qǐng)求出線段AP的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果店張阿姨以每千克2元的價(jià)格購(gòu)進(jìn)柑桔若干千克,以每千克4元的價(jià)格出售,每天可售出50千克,通過(guò)調(diào)查發(fā)現(xiàn),這種柑桔每千克的售價(jià)每降低0.1元,每天可多售出10千克,為保證每天至少售出130千克,張阿姨決定降價(jià)銷售.

1)若將柑桔每千克的售價(jià)降低x元,則每天的銷售量是________千克(用含x的代數(shù)式表示);

2)要想銷售柑桔每天盈利150元,張阿姨需將每千克的售價(jià)降低多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案