如圖,在平面直角坐標系中,拋物線經(jīng)過點A的坐標為(m,m),點B的坐標為(n,-n),且經(jīng)過原點O,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m,n(m<n)分別是方程x2-2x-3=0的兩根.
(1)求m,n的值.
(2)求拋物線的解析式.
(3)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD,BD.當△OPC為等腰三角形時,求點P的坐標.
(1)m=-1,n=3;(2)y=-x2+x;(3)P1(,-),P2(,-),P3(,-).
【解析】
試題分析:(1)解方程即可得出m,n的值.
(2)將A,B兩點的坐標代入,進而利用待定系數(shù)法求出二次函數(shù)解析式即可;
(3)首先求出AB的直線解析式,以及BO解析式,再利用等腰三角形的性質(zhì)得出當OC=OP時,當OP=PC時,點P在線段OC的中垂線上,當OC=PC時分別求出x的值即可.
試題解析:(1)解方程x2-2x-3=0,
得 x1=3,x2=-1.
∵m<n,
∴m=-1,n=3.
(2)∵m=-1,n=3,
∴A(-1,-1),B(3,-3).
∵拋物線過原點,設拋物線的解析式為y=ax2+bx(a≠0).
∴,解得:,
∴拋物線的解析式為y=-x2+x.
(3)設直線AB的解析式為y=kx+b.
∴,解得:,
∴直線AB的解析式為y=-x-.
∴C點坐標為(0,-).
∵直線OB過點O(0,0),B(3,-3),
∴直線OB的解析式為y=-x.
∵△OPC為等腰三角形,
∴OC=OP或OP=PC或OC=PC.
設P(x,-x),
(i)當OC=OP時,x2+(-x)2=.
解得x1=,x2=-(舍去).
∴P1(,-).
(ii)當OP=PC時,點P在線段OC的中垂線上,
∴P2(,-).
(iii)當OC=PC時,由x2+(-x+)2=,
解得x1=,x2=0(舍去).
∴P3(,-).
∴P點坐標為P1(,-),P2(,-),P3(,-).
考點: 二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com