如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,-n),且經(jīng)過原點(diǎn)O,連接OA、OB、AB,線段AB交y軸于點(diǎn)C.已知實(shí)數(shù)m,n(m<n)分別是方程x2-2x-3=0的兩根.
(1)求m,n的值.
(2)求拋物線的解析式.
(3)若點(diǎn)P為線段OB上的一個動點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)D在y軸右側(cè)),連接OD,BD.當(dāng)△OPC為等腰三角形時,求點(diǎn)P的坐標(biāo).
(1)m=-1,n=3;(2)y=-x2+x;(3)P1(,-),P2(,-),P3(,-).
【解析】
試題分析:(1)解方程即可得出m,n的值.
(2)將A,B兩點(diǎn)的坐標(biāo)代入,進(jìn)而利用待定系數(shù)法求出二次函數(shù)解析式即可;
(3)首先求出AB的直線解析式,以及BO解析式,再利用等腰三角形的性質(zhì)得出當(dāng)OC=OP時,當(dāng)OP=PC時,點(diǎn)P在線段OC的中垂線上,當(dāng)OC=PC時分別求出x的值即可.
試題解析:(1)解方程x2-2x-3=0,
得 x1=3,x2=-1.
∵m<n,
∴m=-1,n=3.
(2)∵m=-1,n=3,
∴A(-1,-1),B(3,-3).
∵拋物線過原點(diǎn),設(shè)拋物線的解析式為y=ax2+bx(a≠0).
∴,解得:,
∴拋物線的解析式為y=-x2+x.
(3)設(shè)直線AB的解析式為y=kx+b.
∴,解得:,
∴直線AB的解析式為y=-x-.
∴C點(diǎn)坐標(biāo)為(0,-).
∵直線OB過點(diǎn)O(0,0),B(3,-3),
∴直線OB的解析式為y=-x.
∵△OPC為等腰三角形,
∴OC=OP或OP=PC或OC=PC.
設(shè)P(x,-x),
(i)當(dāng)OC=OP時,x2+(-x)2=.
解得x1=,x2=-(舍去).
∴P1(,-).
(ii)當(dāng)OP=PC時,點(diǎn)P在線段OC的中垂線上,
∴P2(,-).
(iii)當(dāng)OC=PC時,由x2+(-x+)2=,
解得x1=,x2=0(舍去).
∴P3(,-).
∴P點(diǎn)坐標(biāo)為P1(,-),P2(,-),P3(,-).
考點(diǎn): 二次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com