如圖,有長(zhǎng)為48米的籬笆,一面利用墻(墻的最大可用長(zhǎng)度25米),圍成中間隔有一道籬笆的長(zhǎng)方形花圃ABCD.
(1)當(dāng)AB的長(zhǎng)是多少米時(shí),圍成長(zhǎng)方形花圃ABCD的面積為180m2?
(2)能圍成總面積為240m2的長(zhǎng)方形花圃嗎?說明理由.
(1)設(shè)AB的長(zhǎng)是x米,則BC的長(zhǎng)為(48-3x)米,根據(jù)題意列方程得,
x(48-3x)=180,
解得x1=6,x2=10,
當(dāng)x=6時(shí),48-3x=30>25,不符合題意,舍去;
當(dāng)x=10時(shí),48-3x=18<25,符合題意;
答:當(dāng)AB的長(zhǎng)是10米時(shí),圍成長(zhǎng)方形花圃ABCD的面積為180m2

(2)不能,理由如下:
同(1)可得x(48-3x)=240,
整理得x2-16x+80=0,
△=(-16)2-4×80=-64<0,
所以此方程無解,
即不能圍成總面積為240m2的長(zhǎng)方形花圃.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(0,3)、B(4,3)、C(1,0)、
(1)填空:拋物線的對(duì)稱軸為直線x=______,拋物線與x軸的另一個(gè)交點(diǎn)D的坐標(biāo)為______;
(2)求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+4ax+t(a>0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(-1,0).
(1)求拋物線的對(duì)稱軸及點(diǎn)A的坐標(biāo);
(2)過點(diǎn)C作x軸的平行線交拋物線的對(duì)稱軸于點(diǎn)P,你能判斷四邊形ABCP是什么四邊形?并證明你的結(jié)論;
(3)連接CA與拋物線的對(duì)稱軸交于點(diǎn)D,當(dāng)∠APD=∠ACP時(shí),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過A(-3,0),B(1,0),C(3,6)三點(diǎn),且與y軸交于點(diǎn)E.(1)求拋物線的解析式;
(2)若點(diǎn)F的坐標(biāo)為(0,-
1
2
),直線BF交拋物線于另一點(diǎn)P,試比較△AFO與△PEF的周長(zhǎng)的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店將進(jìn)價(jià)為100元的某商品按120元的價(jià)格出售,可賣出300個(gè);若商店在120元的基礎(chǔ)上每漲價(jià)1元,就要少賣10個(gè),而每降價(jià)1元,就可多賣30個(gè).
(1)求所獲利潤(rùn)y(元)與售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)為獲利最大,商店應(yīng)將價(jià)格定為多少元?
(3)為了讓利顧客,在利潤(rùn)相同的情況下,請(qǐng)為商店選擇正確的出售方式,并求出此時(shí)的售價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)有一塊矩形場(chǎng)地,如圖所示,長(zhǎng)為40m,寬為30m,要將這塊地劃分為四塊分別種植:A.蘭花;B.菊花;C.月季;D.牽;ǎ
(1)求出這塊場(chǎng)地中種植B菊花的面積y與B場(chǎng)地的長(zhǎng)x之間的函數(shù)關(guān)系式;求出此函數(shù)與x軸的交點(diǎn)坐標(biāo),并寫出自變量的取值范圍;
(2)當(dāng)x是多少時(shí),種植菊花的面積最大,最大面積是多少?請(qǐng)?jiān)诟顸c(diǎn)圖中畫出此函數(shù)圖象的草圖(提示:找三點(diǎn)描出圖象即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一個(gè)小服裝廠生產(chǎn)某種風(fēng)衣,售價(jià)P(元/件)與月銷售量x(件)之間的關(guān)系為P=160-2x,生產(chǎn)x件的成本R=500+30x元.
(1)該廠的月產(chǎn)量為多大時(shí),獲得的月利潤(rùn)為1300元?
(2)當(dāng)月產(chǎn)量為多少時(shí),可獲得最大月利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,用50m長(zhǎng)的籬笆圍成中間有一道籬笆墻的養(yǎng)殖場(chǎng),設(shè)它的長(zhǎng)為xm,養(yǎng)殖場(chǎng)的一邊靠墻.
(1)要使養(yǎng)殖場(chǎng)的面積最大,養(yǎng)殖場(chǎng)的長(zhǎng)應(yīng)為多少米?
(2)若中間有n(n是大于1的整數(shù))道籬笆隔墻,要使養(yǎng)殖場(chǎng)面積最大,養(yǎng)殖場(chǎng)的長(zhǎng)應(yīng)為多少米?比較(1)和(2),你能得出什么結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:點(diǎn)P(a+1,a-1)關(guān)于x軸的對(duì)稱點(diǎn)在反比例函數(shù)y=-
8
x
(x>0)的圖象上,y關(guān)于x的函數(shù)y=k2x2-(2k+1)x+1的圖象與坐標(biāo)軸只有兩個(gè)不同的交點(diǎn)A﹑B,求P點(diǎn)坐標(biāo)和△PAB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案