【題目】如圖,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC、BD相交于點O,∠BCD=60°,則下列4個結(jié)論:①梯形ABCD是軸對稱圖形;②BC=2AD;③梯形ABCD是中心對稱圖形;④AC平分∠DCB,其中正確的是_____.
【答案】①②④
【解析】
根據(jù)等腰梯形的性質(zhì)即可求出答案.
①∵AB=CD,
∴梯形ABCD是等腰梯形,
∴過點O作直線l⊥BC,此時直線l為梯形的對角線,故①正確;
②如圖,過點D作DE∥AB,
易證,四邊形ADEB是平行四邊形,
∴AD=BE,AB=DE,
∵AB=CD,
∴DE=CD,
∵∠BCD=60°,
∴△DEC是等邊三角形,
∴CE=CD,
∴BC=BE+CE=AD+CD=2AD,故②正確;
③根據(jù)中心對稱圖形的定義可知等腰梯形ABCD不是中心對稱圖形,故③錯誤;
④∵AD=CD,
∴∠DAC=∠DCA,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠DCA=∠ACB,
∴CA平分∠DCB,故④正確;
故答案為:①②④
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是的內(nèi)心,過點作,與、分別交于點、,則( )
A. EF>AE+CF B. EF<AE+CF C. EF=AE+BF D. EF≤AE+CF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,AC為對角線,點E為AC上一點,連接EB,ED.
(1)求證:△BEC≌△DEC;
(2)延長BE交AD于點F,當∠BED=120°時,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商場銷售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下.若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6000元,同時又要使顧客得到實惠,那么每千克應漲價多少元?
(2)每千克水果漲價多少元時,商場每天獲得的利潤最大?獲得的最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,矩形ABCD中,點E、F分別在DC,AB邊上,且點A、F、C在以點E為圓心,EC為半徑的圓上,連接CF,作EG⊥CF于G,交AC于H.已知AB=6,設BC=x,AF=y(tǒng).
(1)求證:∠CAB=∠CEG;
(2)①求y與x之間的函數(shù)關(guān)系式. ②x= 時,點F是AB的中點;
(3)當x為何值時,點F是的中點,以A、E、C、F為頂點的四邊形是何種特殊四邊形?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)解方程x2﹣4x=12;
(2)如圖,△ABP是由△ACE繞A點旋轉(zhuǎn)得到的,若∠APB=110°,∠B=30°,∠PAC=20°,求旋轉(zhuǎn)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=mx+n與反比例函數(shù)y=其中m、n為常數(shù),且mn<0,則它們在同一坐標系中的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形ABCD是正方形,E是CD的中點,P是BC邊上的一點,下列條件:①∠APB=∠EPC;②∠APE=∠APB;③P是BC的中點;④BP∶BC=2∶3.其中能推出△ABP∽△ECP的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com