【題目】計算:12﹣(﹣18+(﹣7)=_____

【答案】23

【解析】

將減法轉(zhuǎn)化為加法,再根據(jù)法則計算可得.

原式=12+187

=307

=23

故答案為:23

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB=90°,CA=CB,DAC上一點(diǎn),EBC的延長線上,且AE=BD,BD的延長線與AE交于點(diǎn)F.試通過觀察、測量、猜想等方法來探索BFAE有何特殊的位置關(guān)系,并說明你猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣4,0)兩點(diǎn),

(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸于C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)設(shè)此拋物線與直線y=﹣x在第二象限交于點(diǎn)D,平行于y軸的直線 與拋物線交于點(diǎn)M,與直線y=﹣x交于點(diǎn)N,連接BM、CM、NC、NB,是否存在m的值,使四邊形BNCM的面積S最大?若存在,請求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,C是線段BE上一點(diǎn),以BC、CE為邊分別在BE的同側(cè)作等邊ABC和等邊DCE,連結(jié)AE、BD.

(1)求證:BD=AE;

(2)如圖2,若M、N分別是線段AE、BD上的點(diǎn),且AM=BN,請判斷CMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是以BC為直徑的△ABC的外接圓,OP∥AC,且與BC的垂線交于點(diǎn)P,OP交AB于點(diǎn)D,BC、PA的延長線交于點(diǎn)E.
(1)求證:PA是⊙O的切線;
(2)若sinE= ,PA=6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:( 2﹣|﹣7|+(5 +25)0﹣(﹣1)2014

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校體育老師為了解該校八年級學(xué)生對球類運(yùn)動項目的喜愛情況,進(jìn)行了隨機(jī)抽樣調(diào)查(每位學(xué)生必須且只能選擇一項最喜愛的運(yùn)動項目),并將調(diào)查結(jié)果進(jìn)行整理,繪制了如圖不完整的統(tǒng)計圖表.請根據(jù)圖表中的信息解答下列問題:

類別

頻數(shù)

A.乒乓球

16

B.足球

20

C.排球

n

D.籃球

15

E.羽毛球

m


(1)填空:m= , n=
(2)若該年級有學(xué)生800人,請你估計這個年級最喜愛籃球的學(xué)生人數(shù);
(3)在這次調(diào)查中隨機(jī)抽中一名最喜愛足球的學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:2x2y+3xy2)﹣[2x2y+4+xy2]3xy2,其中x2,y=﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動點(diǎn),過點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.

(1)求該拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案