【題目】如圖,已知AM∥BN,∠A=60°,點(diǎn)P是射線M上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.

(1)∠CBD=   

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠ACB=∠ABD,則此時(shí)∠ABC=   

(3)在點(diǎn)P運(yùn)動(dòng)的過程中,∠APB與∠ADB的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值:若變化,請(qǐng)找出變化規(guī)律.

【答案】(1)60°;(2)30°;(3)不變.

【解析】

(1)AM∥BN可得∠ABN=180°-∠A,再由BC、BD均為角平分線可求解;

(2)AM∥BN可得∠ACB=∠CBN,再由∠ACB=∠ABD可得∠ABC =∠DBN;

(3)AM∥BN可得∠APB=∠PBN,再由BD為角平分線即可解答.

解:(1)∵AM∥BN,

∴∠ABN=180°﹣∠A=120°,

∵BC,BD分別平分∠ABP∠PBN,

∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°,

故答案為:60°.

(2)∵AM∥BN,

∴∠ACB=∠CBN,

∵∠ACB=∠ABD,

∴∠CBN=∠ABD,

∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,

∴∠ABC=∠CBP=∠DBP=∠DBN,

∴∠ABC=∠ABN=30°,

故答案為:30°.

(3)不變.理由如下:

∵AM∥BN,

∴∠APB=∠PBN,∠ADB=∠DBN,

∵BD平分∠PBN,

∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點(diǎn)坐標(biāo)為(-2,0),則下列說法:①y隨x的增大而減。虎陉P(guān)于x的方程kx+b=0的解為x=-2;③kx+b>0的解集是x>-2;④b<0.其中正確的有__________.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:E在△ABCAC邊的延長(zhǎng)線上,D點(diǎn)在AB邊上,DEBC于點(diǎn)F,DF=EF,BD=CE.求證:△ABC是等腰三角形(過DDG∥ACBCG)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:為了測(cè)量某棵樹的高度,小剛用長(zhǎng)為2m的竹竿做測(cè)量工具,移動(dòng)竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點(diǎn),此時(shí),竹竿與這一點(diǎn)距離6m,與樹相距15m,那么這棵的高度為( )

A.5米
B.7米
C.7.5米
D.21米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)相似三角形和解直角三角形的相關(guān)內(nèi)容后,張老師請(qǐng)同學(xué)們交流這樣的一個(gè)問題:“如上圖,在正方形網(wǎng)格上有△A1B1C1和△A2B2C2 , 這兩個(gè)三角形是否相似?”,那么你認(rèn)為△A1B1C1和△A2B2C2 , (相似或不相似);理由是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD,∠B70°,∠BCE20°,∠CEF130°,請(qǐng)判斷ABEF的位置關(guān)系,并說明理由.

解:   ,理由如下:

ABCD,

∴∠B=∠BCD,(   

∵∠B70°,

∴∠BCD70°,(   

∵∠BCE20°,

∴∠ECD50°,

∵∠CEF130°,

   +   180°,

EF   ,(   

ABEF.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB∥CD.∠1=∠2,∠3=∠4,試說明AD∥BE.

解:∵AB∥CD(已知)

∴∠4=∠

∵∠3=∠4(已知)

∴∠3=∠

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(

即∠ =∠

∴∠3=∠

∴AD∥BE(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________

3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)學(xué)生去測(cè)一條南北流向的河寬,如圖所示,某學(xué)生在河?xùn)|岸點(diǎn)A處觀測(cè)到河對(duì)岸水邊有一點(diǎn)C,測(cè)得C在A北偏西31°的方向上,沿河岸向北前行40米到達(dá)B處,測(cè)得C在B北偏西45°的方向上,請(qǐng)你根據(jù)以上數(shù)據(jù),求這條河的寬度.(參考數(shù)值:tan31°≈

查看答案和解析>>

同步練習(xí)冊(cè)答案