【題目】如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點O順時針旋轉(zhuǎn)75°至OA′B′C′的位置,若OB= ,∠C=120°,則點B′的坐標為( )
A.(3, )
B.(3, )
C.( , )
D.( , )
【答案】D
【解析】解:過點B作BE⊥OA于E,過點B′作B′F⊥OA于F, ∴∠BE0=∠B′FO=90°,
∵四邊形OABC是菱形,
∴OA∥BC,∠AOB= ∠AOC,
∴∠AOC+∠C=180°,
∵∠C=120°,
∴∠AOC=60°,
∴∠AOB=30°,
∵菱形OABC繞原點O順時針旋轉(zhuǎn)75°至OA′B′C′的位置,
∴∠BOB′=75°,OB′=OB=2 ,
∴∠B′OF=45°,
在Rt△B′OF中,
OF=OB′cos45°=2 × = ,
∴B′F= ,
∴點B′的坐標為:( ,﹣ ).
故選D.
首先根據(jù)菱形的性質(zhì),即可求得∠AOB的度數(shù),又由將菱形OABC繞原點O順時針旋轉(zhuǎn)75°至OA′B′C′的位置,可求得∠B′OA的度數(shù),然后在Rt△B′OF中,利用三角函數(shù)即可求得OF與B′F的長,則可得點B′的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將兩張等寬的長方形紙條交叉疊放,重疊部分是一個四邊形ABCD,若AD=6cm,∠ABC=60°,則四邊形ABCD的面積等于cm2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2011年3月11日13時46分日本發(fā)生了9.0級大地震,伴隨著就是海嘯.山坡上有一顆與水平面垂直的大樹,海嘯過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面(如圖所示).已知山坡的坡角∠AEF=23°,測得樹干的傾斜角為∠BAC=38°,大樹被折斷部分和坡面的角∠ADC=60°,AD=4米.
(1)求∠DAC的度數(shù);
(2)求這棵大樹折斷前高是多少米?(注:結(jié)果精確到個位)(參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作EF⊥AC于點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)如果∠A=60°,則DE與DF有何數(shù)量關(guān)系?請說明理由;
(3)如果AB=5,BC=6,求tan∠BAC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y= 上,第二象限的點B在反比例函數(shù)y= 上,且OA⊥OB,tanA= ,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點M(cos30°,sin30°)關(guān)于原點中心對稱的點的坐標是( )
A.( , )
B.(﹣ ,﹣ )
C.(﹣ , )
D.(﹣ ,﹣ )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于 MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com