填空:
(1)方程x2+2x+1=0的根為x1=______,x2=______,則x1+x2=______,x1•x2=______;
(2)方程x2-3x-1=0的根為x1=______,x2=______,則x1+x2=______,x1•x2=______;
(3)方程3x2+4x-7=0的根為x1=______,x2=______,則x1+x2=______,x1•x2=______.
由(1)(2)(3)你能得到什么猜想?并證明你的猜想.請用你的猜想解答下題:已知22+
3
是方程x2-44x+C=0的一個根,求方程的另一個根及C的值.
(1)方程x2+2x+1=0,
∵b 2-4ac=0,
∴x1=x2=-
2
2
=-1,
則x1+x2=-2,x1•x2=1;
故答案為:-1,-1,-2,1;

(2)方程x2-3x-1=0,
∵b 2-4ac=9+4=13>0,
∴x=
13
2
,
x1=
3+
13
2
,x2=
3-
13
2
,則x1+x2=3,x1•x2=-1;
故答案為:
3+
13
2
,
3-
13
2
,3,-1;


(3)方程3x2+4x-7=0
∵b 2-4ac=16+84=100>0,
∴x=
-4±
100
6

∴x1=-
7
3
,x2=1,則x1+x2=-
4
3
,x1•x2=-
7
3

由(1)(2)(3)能得到:x1+x2=-
b
a
,x1•x2=
c
a
;
∵當b 2-4ac>0,
∴x=
-b±
b2-4ac
2a
,
∴x 1=
-b+
b2-4ac
2a
,x2=
-b-
b2-4ac
2a
,
∴x1+x2=-
b
a
,x1•x2=
c
a
;
∵22+
3
是方程x2-44x+C=0的一個根,
∴x1+x2=22+
3
+x2=-
-44
1
=44,
∴x2=22-
3
,
∴x1x2=(22+
3
)(22-
3
)=C,
∴C=-481.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知x1、x2為方程x2+3x+1=0的兩實根且x1>x2,則x12+x22=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當y取得最小值時,求相應(yīng)m的值,并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面的材料:
∵ax2+bx+c=0(a≠0)的根為x1=
-b+
b2-4ac
2a
,x2=
-b-
b2-4ac
2a

∴x1+x2=-
2b
2a
=-
b
a
,x1x2=
b2-(b2-4ac)
4a2
=
c
a

(1)若x2-px+q=0的兩根為-1和3,求p和q的值;
(2)設(shè)方程3x2+2x-1=0的根為x1、x2,求
1
x1
+
1
x2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

任寫一個一根為-1,另一根大于0小于1的一元二次方程______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一元二次方程2x2-7x-15=0的根的情況是(  )
A.有兩個正的實數(shù)根B.有兩個負的實數(shù)根
C.兩根的符號相反D.方程沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在長24m,寬20m的矩形花園的中央建一個面積為320㎡的矩形花壇,使建成后四周的走道寬度相等,求走道的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一邊靠墻(墻長7m),另三邊用14m的木欄圍成一個長方形,面積為20m2,這個長方形場地的長為( 。
A.10m或5mB.5mC.4mD.2m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若x1、x2是一元二次方程x2+2x-3=0的兩個根,則x1+x2的值為(  )
A.3B.2C.-2.D.-3.

查看答案和解析>>

同步練習(xí)冊答案