如圖已知圓心A(0,3),⊙A與x軸相切,⊙B的圓心在x軸的正半軸上,且⊙B與⊙A外切于點(diǎn)P,兩圓的公切線MP交y軸于點(diǎn)M,交x軸于點(diǎn)N.

(1)

,求直線MP的解析式及經(jīng)過M、N、B三點(diǎn)的拋物線的解析式.

(2)

若⊙A的位置大小不變,⊙B的圓心在x軸的正半軸上移動,并使⊙B與⊙A始終外切,過M作⊙B的切線MC,切點(diǎn)為C.在此變化過程中探究:

①四邊形OMCB是什么四邊形,對你的結(jié)論加以證明.②經(jīng)過M、N、B三點(diǎn)的拋物線內(nèi)是否存在以BN為腰的等腰三角形?若存在,表示出來;若不存在,說明理由.

答案:1.二次函數(shù);
解析:

(1)

(2)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖已知等邊三角形OAB的邊長為2
3
cm,下列以O(shè)為圓心的各圓中,半徑是3cm的圓是( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖已知直線L:y=
34
x+3,它與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn).
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)設(shè)F為x軸上一動點(diǎn),用尺規(guī)作圖作出⊙P,使⊙P經(jīng)過點(diǎn)B且與x軸相切于點(diǎn)F(不寫作法,保留作圖痕跡).
(3)設(shè)(2)中所作的⊙P的圓心坐標(biāo)為P(x,y),求y關(guān)于x的函數(shù)關(guān)系式.
(4)是否存在這樣的⊙P,既與x軸相切又與直線L相切于點(diǎn)B?若存在,求出圓精英家教網(wǎng)心P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前30天沖刺得分專練12:尺規(guī)作圖、命題(解析版) 題型:解答題

(2009•桂林)如圖已知直線L:y=x+3,它與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn).
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)設(shè)F為x軸上一動點(diǎn),用尺規(guī)作圖作出⊙P,使⊙P經(jīng)過點(diǎn)B且與x軸相切于點(diǎn)F(不寫作法,保留作圖痕跡).
(3)設(shè)(2)中所作的⊙P的圓心坐標(biāo)為P(x,y),求y關(guān)于x的函數(shù)關(guān)系式.
(4)是否存在這樣的⊙P,既與x軸相切又與直線L相切于點(diǎn)B?若存在,求出圓心P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江杭州市九年級中考二模數(shù)學(xué)試題卷(解析版) 題型:解答題

如圖, 已知直線分別與軸, 軸交于兩點(diǎn), 點(diǎn)軸上. 以點(diǎn)為圓心的⊙與直線相切于點(diǎn), 連接.

(1) 求證: ;

(2)如果⊙的半徑為, 求出點(diǎn)的坐標(biāo), 并寫出以為頂點(diǎn), 且過點(diǎn)的拋物線的解析式;

    (3) 在(2)的條件下, 在此拋物線上是否存在點(diǎn), 使得以三點(diǎn)為頂點(diǎn)的三角形與相似? 如果存在, 請求出所有符合條件的點(diǎn)的坐標(biāo); 如果不存在, 請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案