(1)如圖,A、B、C是三個(gè)居住人口數(shù)量相同的住宅小區(qū)的大門(mén)所在位置,且A、B、C三點(diǎn)共線,已知AB=120米,BC=200米,E、F分別是AB、BC的中點(diǎn),為了方便三個(gè)小區(qū)的居民出行,公交公司計(jì)劃在E點(diǎn)或F點(diǎn)設(shè)一公交?空军c(diǎn),為使從三個(gè)小區(qū)大門(mén)步行到公交?奎c(diǎn)的路程長(zhǎng)之和最小,你認(rèn)為公交車(chē)?奎c(diǎn)的位置應(yīng)設(shè)在哪里,為什么?

(2)已知A、B、C三點(diǎn)在一條直線上,如果AB=a,BC=b,且a<b,求線段AB和BC的中點(diǎn)E、F之間的距離.

解:(1)∵E、F分別是AB、BC的中點(diǎn),AB=120米,BC=200米,
∴AE=BE=60米,BF=CF=100米;
當(dāng)公交公司在E點(diǎn)設(shè)一公交?空军c(diǎn),則從三個(gè)小區(qū)大門(mén)步行到公交?奎c(diǎn)的路程長(zhǎng)之和為:
AE+BE+CE,
=AB+BC+BE,
=120+200+60,
=380(米);
當(dāng)公交公司在F點(diǎn)設(shè)一公交?空军c(diǎn),則從三個(gè)小區(qū)大門(mén)步行到公交?奎c(diǎn)的路程長(zhǎng)之和為:
AF+BF+CF,
=AB+BF+BC,
=120+100+200,
=420(米);
∵380<420,
∴公交車(chē)?奎c(diǎn)的位置應(yīng)該是點(diǎn)E處;

(2)①根據(jù)題意,得,
∵E、F分別是AB、BC的中點(diǎn),
∴EB=AB,BF=BC;
又∵EF=EB+BF,
∴EF=(AB+BC)=(a+b);


此時(shí)FB=b,EB=a,
EF=FB-EB=(b-a).
分析:(1)根據(jù)圖示,先分別計(jì)算一下從三個(gè)小區(qū)大門(mén)步行到公交?奎c(diǎn)E、F的路程長(zhǎng)之和,然后比較一下大小,路程小的即為所求;
(2)根據(jù)題意,畫(huà)出圖示,根據(jù)圖示找出EF與AB、BC的數(shù)量關(guān)系,注意分類(lèi)討論.
點(diǎn)評(píng):本題主要考查了兩點(diǎn)間的距離.解答本題是,采用了數(shù)形結(jié)合的數(shù)學(xué)思想,降低了題目的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點(diǎn)是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點(diǎn),過(guò)A,B兩點(diǎn)分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點(diǎn)得菱形,又順次連接菱形各邊中點(diǎn)得矩形,再順次連接矩形各邊中點(diǎn)得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖是某幾何體的三視圖,則這個(gè)幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過(guò)BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案