(2010•蕪湖)如圖,在平面直角坐標系中放置一矩形ABCO,其頂點為A(0,1)、B(-3,1)、C(-3,0)、O(0,0).將此矩形沿著過E(-,1)、F(-,0)的直線EF向右下方翻折,B、C的對應點分別為B′、C′.
(1)求折痕所在直線EF的解析式;
(2)一拋物線經(jīng)過B、E、B′三點,求此二次函數(shù)解析式;
(3)能否在直線EF上求一點P,使得△PBC周長最?如能,求出點P的坐標;若不能,說明理由.

【答案】分析:(1)根據(jù)E、F的坐標,設出直線式EF的解析式為y=kx+b,兩點坐標代入,求出k和b即可;
(2)過B′作B′A′⊥BA于A′,在Rt△B′EA′中,通過解直角三角形可求出A′E、A′B′的長,通過證A′E=AE,得出B′在y軸上的結(jié)論,從而得出B′坐標,進而用待定系數(shù)法求出拋物線的解析式;
(3)連接B′C,由于B、B′關于EF所在直線對稱,則B′C與折痕的交點即為所求的P點,可求出直線B′C的解析式,聯(lián)立折痕EF的解析式即可求出P點坐標.
解答:解:(1)由于折痕所在直線EF過E(-,1)、F(-,0),則有:
∴設直線EF的解析式為y=kx+b,

解得k=,b=4,
所以直線EF的解析式為:y=x+4.

(2)設矩形沿直線EF向右下方翻折后,B、C的對應點為B′(x1,y1),C′(x2,y2);
過B′作B′A′⊥AE交AE所在直線于A′點;
∵B′E=BE=2,∠B′EF=∠BEF=60°,
∴∠B′EA′=60°,
∴A′E=,B′A′=3;
∴A與A′重合,B′在y軸上;
∴x1=0,y1=-2,
即B′(0,-2);【此時需說明B′(x1,y1)在y軸上】.
設二次函數(shù)解析式為:y=ax2+bx+c,拋物線過B(-3,1)、E(-,1)、B′(0,-2);
得到,
解得
∴該二次函數(shù)解析式y(tǒng)=-x2-x-2;

(3)能,可以在直線EF上找到P點;
連接B′C交EF于P點,再連接BP;
由于B′P=BP,此時點P與C、B′在一條直線上,故BP+PC=B′P+PC的和最小;
由于BC為定長,所以滿足△PBC周長最;
設直線B′C的解析式為:y=kx+b,則有:
,
解得;
∴直線B′C的解析式為:y=-x-2;
又∵P為直線B′C和直線EF的交點,
,
解得;
∴點P的坐標為(-,-).
點評:此題主要考查了一次函數(shù)、二次函數(shù)解析式的確定,軸對稱圖形的性質(zhì)、函數(shù)圖象交點等知識,難度偏大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•蕪湖)如圖,在平面直角坐標系中放置一矩形ABCO,其頂點為A(0,1)、B(-3,1)、C(-3,0)、O(0,0).將此矩形沿著過E(-,1)、F(-,0)的直線EF向右下方翻折,B、C的對應點分別為B′、C′.
(1)求折痕所在直線EF的解析式;
(2)一拋物線經(jīng)過B、E、B′三點,求此二次函數(shù)解析式;
(3)能否在直線EF上求一點P,使得△PBC周長最?如能,求出點P的坐標;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省杭州市義橋?qū)嶒瀸W校中考數(shù)學模擬試卷(解析版) 題型:填空題

(2010•蕪湖)如圖,光源P在橫桿AB的上方,AB在燈光下的影子為CD,AB∥CD,已知AB=2m,CD=6m,點P到CD的距離是2.7m,那么AB與CD間的距離是   

查看答案和解析>>

科目:初中數(shù)學 來源:2011年湖北省武漢六中中考數(shù)學模擬試卷(3月份)(解析版) 題型:選擇題

(2010•蕪湖)如圖所示,在圓⊙O內(nèi)有折線OABC,其中OA=8,AB=12,∠A=∠B=60°,則BC的長為( )

A.19
B.16
C.18
D.20

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省蕪湖市中考數(shù)學試卷(解析版) 題型:解答題

(2010•蕪湖)如圖,直角梯形ABCD中,∠ADC=90°,AD∥BC,點E在BC上,點F在AC上,∠DFC=∠AEB.
(1)求證:△ADF∽△CAE;
(2)當AD=8,DC=6,點E、F分別是BC、AC的中點時,求直角梯形ABCD的面積?

查看答案和解析>>

同步練習冊答案