【題目】如圖,中,,,軸,,拋物線的頂點為,與軸交點為.
(1)設(shè)為中點,直接寫出直線的函數(shù)表達(dá)式:______________.
(2)求點最高時的坐標(biāo);
(3)拋物線有可能經(jīng)過點嗎?請說明理由;
(4)在的位置隨的值變化而變化的過程中,求點在內(nèi)部所經(jīng)過路線的長.
【答案】(1);(2)點最高時的坐標(biāo)為;(3)不可能,理由詳見解析;(4)點在內(nèi)部所經(jīng)過路線的長為.
【解析】
(1)由題意,A點的橫縱坐標(biāo)相等,P點的橫縱坐標(biāo)相等,可得直線AP為y=x;
(2) 中令x=0,得出y關(guān)于t的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)得出最大值即可;
(3)先求出C點的坐標(biāo),將C點坐標(biāo)代入二次函數(shù)解析式,得出關(guān)于t的一元二次方程,再根據(jù)一元二次方程判別式的正負(fù)判斷;
(4)由,知頂點,所以點M在內(nèi)部所經(jīng)過路線的長即為AP的長.
解:(1)∵,,軸,,
∴點B的坐標(biāo)為(4,2),點C的坐標(biāo)為(2,4),
又P為BC的中點,∴點P的坐標(biāo)為(3,3),
∴由A,P兩點的坐標(biāo)可得直線AP的解析式為.
故答案為:y=x.
(2)當(dāng)時,
最大值為,即與軸交點縱坐標(biāo)的最大值.
點最高時的坐標(biāo)為.
(3)不可能.
理由:把,代入,
得,化簡為.
,
方程沒有實數(shù)根,即拋物線不可能經(jīng)過點.
(4)由,知頂點,
在的位置隨的值變化而變化的過程中,
點都在直線上移動,且經(jīng)過直線上的點,.
在中,,
,.
點在內(nèi)部所經(jīng)過路線的長為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)
(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)玩轉(zhuǎn)盤游戲時,把質(zhì)地相同的兩個盤A、B分別平均分成2份和3份,并在每一份內(nèi)標(biāo)有數(shù)字如圖.游戲規(guī)則:甲、乙兩同學(xué)分別同時轉(zhuǎn)動兩個轉(zhuǎn)盤各1次,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)趨^(qū)域的數(shù)字之積為偶數(shù)時甲勝;數(shù)字之積為奇數(shù)時乙勝.若指針恰好在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.
(1)用樹狀圖或列表的方法,求甲獲勝的概率;
(2)這個游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點,與軸交于點,連接.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若點為拋物線對稱軸上一點,拋物線上是否存在點,使得以,,,為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點的坐標(biāo);若不存在,請說明理由;
(3)點是直線上方拋物線上的點,若,求出點的到軸的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以為圓心,半徑為的圓與反比例函數(shù)的圖象交于,兩點,則點到軸的距離為_____________,的長度為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將圖中的型(正方形)、型(菱形)、型(等腰直角三角形)紙片分別放在個盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這個盒子裝入一只不透明的袋子中.
(1)攪勻后從中摸出個盒子,盒中的紙片既是軸對稱圖形又是中心對稱圖形的概率是 ;
(2)攪勻后先從中摸出個盒子(不放回),再從余下的個盒子中摸出個盒子,把摸出的個盒中的紙片長度相等的邊拼在一起,求拼成的圖形是軸對稱圖形的概率.(不重疊無縫隙拼接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=x2﹣x﹣2的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的圖形是函數(shù)y=|x2﹣x﹣2|的圖象,已知過點D(0,4)的直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個交點,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點A,與函數(shù)(x>0)的圖象相交于點B(t,1).
(1)求點B的坐標(biāo)及一次函數(shù)的解析式;
(2)點P的坐標(biāo)為(m,m)(m>0),過P作PE∥x軸,交直線AB于點E,作PF∥y軸,交函數(shù)(x>0)的圖象于點F.
①若m=2,比較線段PE,PF的大;
②直接寫出使PE≤PF的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖圖形由大小相同的正方形組成,第1個圖形小正方形的個數(shù)為5,第2個圖形小正方形的個數(shù)為12,第3個圖形小正方形的個數(shù)為21,則第6個圖形小正方形的個數(shù)為( 。
A.50B.60C.70D.80
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com