小明將一張矩形紙片ABCD沿CE折疊,B點(diǎn)恰好落在AD邊上,設(shè)此點(diǎn)為F,若AB:BC=4:5,則cos∠DFC的值為( )

A.
B.
C.
D.
【答案】分析:根據(jù)折疊的性質(zhì)可得出CF=CB,在RT△CDF中利用勾股定理可求出DF的長(zhǎng)度,繼而可求出cos∠DFC的值.
解答:解:由折疊的性質(zhì)得,CB=CF,
設(shè)AB=4x,則BC=5x,
在RT△DFC中,DF==3x,
∴cos∠DFC==
故選B.
點(diǎn)評(píng):此題考查了翻折變換及勾股定理的知識(shí),解答本題的關(guān)鍵是根據(jù)折疊的性質(zhì)得出CF的長(zhǎng)度,在RT△CDF中求出DF的長(zhǎng)度,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,小明將一張矩形紙片沿對(duì)角線剪開(kāi),得到兩張三角形紙片(如圖2),量得他們的斜邊長(zhǎng)為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,但點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合.(在圖3至圖6中統(tǒng)一用F表示)
精英家教網(wǎng)
小明在對(duì)這兩張三角形紙片進(jìn)行如下操作時(shí)遇到了三個(gè)問(wèn)題,請(qǐng)你幫助解決.
(1)將圖3中的△ABF沿BD向右平移到圖4的位置,使點(diǎn)B與點(diǎn)F重合,請(qǐng)你求出平移的距離;
(2)將圖3中的△ABF繞點(diǎn)F順時(shí)針?lè)较蛐D(zhuǎn)30°到圖5的位置,A1F交DE于點(diǎn)G,請(qǐng)你求出線段FG的長(zhǎng)度;
(3)將圖3中的△ABF沿直線AF翻折到圖6的位置,AB1交DE于點(diǎn)H,請(qǐng)證明:AH﹦DH.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,小明將一張矩形紙片沿對(duì)角線剪開(kāi),得到兩張全等直角三角形紙片(如圖2),量得他們的斜邊長(zhǎng)為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,使點(diǎn)B、F、D在同一條直線上,F(xiàn)為公共直角頂點(diǎn).
精英家教網(wǎng)
小明在對(duì)這兩張三角形紙片進(jìn)行如下操作時(shí)遇到了兩個(gè)問(wèn)題,請(qǐng)你幫助解決.
(1)將圖3中的△ABF繞點(diǎn)F順時(shí)針?lè)较蛐D(zhuǎn)30°到圖4的位置,A1F交DE于點(diǎn)G,請(qǐng)你求出線段FG的長(zhǎng)度;
(2)將圖3中的△ABF沿直線AF翻折到圖5的位置,AB1交DE于點(diǎn)H,請(qǐng)證明:AH=DH.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•歷下區(qū)二模)小明將一張矩形紙片ABCD沿CE折疊,B點(diǎn)恰好落在AD邊上,設(shè)此點(diǎn)為F,若AB:BC=4:5,則cos∠DFC的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,小明將一張矩形紙片ABCD沿CE折疊,B點(diǎn)恰好落在AD邊上,設(shè)此點(diǎn)為F,若AB:BC=3:5,求sin∠DCF的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年廣東省汕頭市植英中學(xué)八年級(jí)第一學(xué)期期末考試試數(shù)學(xué)卷 題型:解答題

如圖1,小明將一張矩形紙片沿對(duì)角線剪開(kāi),得到兩張全等直角三角形紙片(如圖2),量得他們的斜邊長(zhǎng)為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,使點(diǎn)B、F、D在同一條直線上,F(xiàn)為公共直角頂點(diǎn).

小明在對(duì)這兩張三角形紙片進(jìn)行如下操作時(shí)遇到了兩個(gè)問(wèn)題,請(qǐng)你幫助解決。(1)將圖3中的△ABF繞點(diǎn)F順時(shí)針?lè)较蛐D(zhuǎn)30°到圖4的位置,A1F交DE于點(diǎn)G,請(qǐng)你求出線段EG的長(zhǎng)度;(2)將圖3中的△ABF沿直線AF翻折到圖5的位置,AB1交DE于點(diǎn)H,請(qǐng)證明:AH=DH.

查看答案和解析>>

同步練習(xí)冊(cè)答案