(2009•防城港)如圖,射線PQ是⊙O相切于點(diǎn)A,射線PO與⊙O相交于B,C兩點(diǎn),連接AB,若PB:BC=1:2上,則∠PAB的度數(shù)等于( )

A.26°
B.30°
C.32°
D.45°
【答案】分析:根據(jù)切割線定理,切線的性質(zhì),直角三角形的性質(zhì)計(jì)算.
解答:解:連接OA,則有OA⊥PA,
由于PB:BC=1:2,
∴設(shè)BC=2x,
則PB=OB=OA=x,PC=3x,
由切割線定理知,PA2=PB•PC=3x2,
∴PA=x,
tan∠P=OA:PA=1:,
∴∠P=30°,
∴∠AOB=90°-∠P=90°-30°=60°,
∴△AOB是等邊三角形,
∴∠BA0=60°,
∴∠PAB=90°-∠BAO=90°-60°=30°.
故選B.
點(diǎn)評(píng):本題利用了切割線定理,切線的性質(zhì),直角三角形的性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2009•防城港)將直線y=x向左平移1個(gè)單位長度后得到直線α,如圖,直線α與反比例函數(shù)y=(x>0)的圖象相交于A,與x軸相交于B,則OA2-OB2=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)三輪復(fù)習(xí)每天30分綜合訓(xùn)練(05)(解析版) 題型:填空題

(2009•防城港)將直線y=x向左平移1個(gè)單位長度后得到直線α,如圖,直線α與反比例函數(shù)y=(x>0)的圖象相交于A,與x軸相交于B,則OA2-OB2=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣西玉林市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•防城港)將直線y=x向左平移1個(gè)單位長度后得到直線α,如圖,直線α與反比例函數(shù)y=(x>0)的圖象相交于A,與x軸相交于B,則OA2-OB2=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣西防城港市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•防城港)將直線y=x向左平移1個(gè)單位長度后得到直線α,如圖,直線α與反比例函數(shù)y=(x>0)的圖象相交于A,與x軸相交于B,則OA2-OB2=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(04)(解析版) 題型:解答題

(2009•防城港)將一副直角三角板放置像圖1那樣,等腰直角三角板ACB的直角頂點(diǎn)A在直角三角板EDF的直角邊DE上,點(diǎn)C、D、B、F在同一直線上,點(diǎn)D、B是CF的三等分點(diǎn),CF=6,∠F=30°.
(1)三角板ACB固定不動(dòng),將三角板EDF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)至EF∥CB(如圖2),試求DF旋轉(zhuǎn)的度數(shù);點(diǎn)A在EF上嗎?為什么?
(2)在圖2的位置,將三角板EDF繞點(diǎn)D繼續(xù)逆時(shí)針旋轉(zhuǎn)15°.請(qǐng)問此時(shí)AC與DF有何位置關(guān)系?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案