如圖,四邊形ABCD為⊙O內(nèi)接四邊形,AB為直徑,過點(diǎn)A作直線CD的垂線,垂足為E.若AB=5,BC=3,則tan∠DAE的值是________.


分析:連接AC,由圓周角定理可知∠ACB=90°,則∠CAB+∠ABC=90°,再根據(jù)勾股定理求出AC的長(zhǎng),由圓內(nèi)接四邊形的性質(zhì)可知∠ADE=∠ABC,再根據(jù)AE⊥CD可知∠AED=90°,故∠DAE+∠ADE=90°,所以∠DEA=∠CAB,根據(jù)銳角三角函數(shù)的定義即可得出結(jié)論.
解答:解:連接AC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠CAB+∠ABC=90°,
∵AB=5,BC=3,
∴AC===4,
∵四邊形ABCD為⊙O內(nèi)接四邊形,
∴∠ADE=∠ABC,
∵AE⊥CD,
∴∠AED=90°,
∴∠DAE+∠ADE=90°,
∴∠DAE=∠CAB,即tan∠DAE=tan∠CAB==
故答案為:
點(diǎn)評(píng):本題考查的是圓周角定理及圓內(nèi)接四邊形的性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案