如圖所示,在平面直角坐標(biāo)系中,已知點A(2,2),點B(2,-3).試問,坐標(biāo)軸上是否存在一點P,使得△ABP為直角三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.

解:(1)∠BAP=90°易得P1(0,2);

(2)∠ABP=90°易得P2(0,-3);

(3)∠BAP=90°;
(如圖)以AB為直徑畫⊙O′與x軸,y軸分別交于P3、P4、P5、P6
AB與x軸交于C,過點O′作O′D⊥y軸,
在Rt△OO′p3中易知O′D=2,O′p3=,則P3D==,
OP3=P3D-OD=-=1,則P3(0,1)易知P3D=P5D,
則P5(0,-2),連接O′P4,O′P6,
易求出P4(2-,0)P6(2+,0)
綜上所述P1(0,2),P2(0,-3),P3(0,1),
P4(2-,0),P5(0,-2),P6(2+,0).

分析:(1)∠BAP=90°,易得P1(0,2);
(2)∠ABP=90°,易得P2(0,-3);
(3)∠BAP=90°(如圖)以AB為直徑畫⊙O′與x軸,y軸分別交于P3、P4、P5、P6,AB與x軸交于C,過點O′作O′D⊥y軸.在Rt△OO′p3中,利用勾股定理求出P3D,OP3,再連接O′P4,O′P6,即可求出P4,P6的坐標(biāo).
點評:此題主要考查學(xué)生對勾股定理和坐標(biāo)與圖形性質(zhì)的理解和掌握,此題有一定的拔高難度,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖所示,在平面直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(-2,0)和(2,0).月牙①繞點B順時針旋轉(zhuǎn)90°得到月牙②,則點A的對應(yīng)點A′的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系中,一顆棋子從點P處開始依次關(guān)于點A,B,C作循環(huán)對稱跳動,即第一次從點P跳到關(guān)于點A的對稱點M處,第二次從點M跳到關(guān)于點B的對稱點N處,第三次從點N跳到關(guān)于點C的對稱點處,…如此下去.
(1)在圖中標(biāo)出點M,N的位置,并分別寫出點M,N的坐標(biāo):
 

(2)請你依次連接M、N和第三次跳后的點,組成一個封閉的圖形,并計算這個圖形的面積;
(3)猜想一下,經(jīng)過第2009次跳動之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,有一組對角線長分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點重合),依上述排列方式,對角線長為n的第n個正方形的頂點An的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(-1,0)、B(3,0)兩點,拋物線與y軸交點為C,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫出頂點D的坐標(biāo);
(2)如果P點的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為P',請直接寫出P'點坐標(biāo),并判斷點P'是否在該拋物線上.

查看答案和解析>>

同步練習(xí)冊答案