如圖1,四邊形ABCD是邊長為5的正方形,以BC的中點O為原點,BC所在直線為x軸建立平面直角坐標系.拋物線y=ax2經過A,O,D三點,圖2和圖3是把一些這樣的小正方形及其內部的拋物線部分經過平移和對稱變換得到的.
(1)求a的值;
(2)求圖2中矩形EFGH的面積;
(3)求圖3中正方形PQRS的面積.

【答案】分析:(1)根據(jù)題意可得點D的坐標,將點D的坐標代入二次函數(shù)解析式即可求得a的值;
(2)根據(jù)圖形分析得:正方形IJKL沿射線JU方向平行移動15個單位長度與正方形MNUT重合,由平行移動的性質可知EH=15,同理可得EF=10,可得矩形的面積;
(3)建立直角坐標系,設的點的坐標,根據(jù)拋物線與正方形的對稱性列方程求得即可.
解答:解:(1)根據(jù)題意得點D的坐標為(,5).
把點D(,5)代入y=ax2,
.(3分)

(2)如圖1,根據(jù)題意得正方形IJKL沿射線JU方向平行移動15個單位長度與正方形MNUT重合,由平行移動的性質可知EH=15.
同理可得EF=10.
∴S矩形EFGH=15×10=150.(6分)
(本問只要寫出正確結果便可得3分)

(3)如圖2,建立平面直角坐標系,
設Q點坐標為(m,m2),其中m<0.
由拋物線、正方形的對稱性可得ZQ=VQ.

解得(舍去).
∴點Q坐標為().(8分)
(9分)
∴S正方形PQRS=RQ2=.(10分)
點評:此題考查了二次函數(shù)的綜合應用,解題的關鍵是要注意數(shù)形結合思想的應用,特別是要注意二次函數(shù)的對稱性以及方程思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂精英家教網(wǎng)足分別為E、F,得四邊形DECF,設DE=x,DF=y.
(1)含y的代數(shù)式表示AE;
(2)y與x之間的函數(shù)關系式,并求出x的取值范圍;
(3)設四邊形DECF的面積為S,x在什么范圍時s隨x增大而增大.x在什么范圍時s隨x增大而減小,并畫出s與x圖象;
(4)求出x為何值時,面積s最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,AE=EF=FC,BE、AD相交于點G,下列4個結論:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四邊形EFDG;其中正確的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案