精英家教網 > 初中數學 > 題目詳情
12、已知兩直線相交,則下列結論成立的是( 。
分析:根據相交線的性質,分析選項可得答案.
解答:解:根據相交直線的性質,分析可得:
A、所構成的四個角中,不一定有直角,錯誤;
B、四個角不一定都相等,錯誤;
C、符合鄰角的定義,正確;
D、對頂角相等,錯誤.
故選C.
點評:本題考查相交線的性質,是需要熟記的內容.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:如圖1,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG⊥CE,垂足分別為F、G,連接FG,延長AF、AG,與直線BC相交,易證FG=
12
(AB+AC+BC).
若:(1)BD、CE分別是△ABC的內角平分線(如圖2);
(2)BD為△ABC的內角平分線,CE為△ABC的外角平分線(如圖3),
則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數量關系?請寫出你的猜想,并對其中的一種情況給予證明.
精英家教網

查看答案和解析>>

科目:初中數學 來源:同步題 題型:解答題

已知:如圖1,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,
AG⊥CE,垂足分別為F、G,連接FG,延長AF、AG,與直線BC相交,易證
FG=(AB+AC﹣BC).
若:(1)BD、CE分別是△ABC的內角平分線(如圖2);
        (2)BD為△ABC的內角平分線,CE為△ABC的外角平分線(如圖3),
則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數量關系?請寫出你的猜想,并對其中的一種情況給予證明.
?

查看答案和解析>>

科目:初中數學 來源:《24.4 中位線》2010年同步練習(解析版) 題型:解答題

已知:如圖1,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG⊥CE,垂足分別為F、G,連接FG,延長AF、AG,與直線BC相交,易證FG=(AB+AC+BC).
若:(1)BD、CE分別是△ABC的內角平分線(如圖2);
(2)BD為△ABC的內角平分線,CE為△ABC的外角平分線(如圖3),
則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數量關系?請寫出你的猜想,并對其中的一種情況給予證明.

查看答案和解析>>

科目:初中數學 來源:《第1章 圖形與證明(二)》2009年綜合水平測試卷(B卷)(解析版) 題型:解答題

已知:如圖1,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG⊥CE,垂足分別為F、G,連接FG,延長AF、AG,與直線BC相交,易證FG=(AB+AC+BC).
若:(1)BD、CE分別是△ABC的內角平分線(如圖2);
(2)BD為△ABC的內角平分線,CE為△ABC的外角平分線(如圖3),
則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數量關系?請寫出你的猜想,并對其中的一種情況給予證明.

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《三角形》(07)(解析版) 題型:解答題

(2003•黑龍江)已知:如圖1,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG⊥CE,垂足分別為F、G,連接FG,延長AF、AG,與直線BC相交,易證FG=(AB+AC+BC).
若:(1)BD、CE分別是△ABC的內角平分線(如圖2);
(2)BD為△ABC的內角平分線,CE為△ABC的外角平分線(如圖3),
則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數量關系?請寫出你的猜想,并對其中的一種情況給予證明.

查看答案和解析>>

同步練習冊答案