【題目】用合適的方法解方程:
(1)(2t+3)2=3(2t+3)
(2)(2x﹣1)2=9(x﹣2)2
(3)2x2=5x﹣1
(4)x2+4x﹣5=0
【答案】(1)t1=﹣,t2=0;(2)x1=,x2=5;(3);(4)x1=1,x2=﹣5
【解析】
(1)等號的左右兩邊都有(2t+3),可移項然后用因式分解法解此方程.
(2)等號的左右兩邊都有平方,可移項然后用因式分解法解此方程.
(3)此題可采用公式法解,先化成一般形式,代入公式即可.
(4)此題可采用十字相乘法或者是配方法即可.
(1)(2t+3)2=3(2t+3)
(2t+3)2﹣3(2t+3)=0
(2t+3)(2t+3﹣3)=0
∴2t+3=0或2t=0
∴t1=﹣,t2=0.
(2)(2x﹣1)2=9(x﹣2)2
(2x﹣1)2﹣9(x﹣2)2=0
(2x﹣1+3x﹣6)(2x﹣1﹣3x+6)=0
5x﹣7=0或﹣x+5=0
∴x1=,x2=5.
(3)2x2=5x﹣1
2x2﹣5x+1=0
x=
∴x1=,x2=.
(4)x2+4x﹣5=0
(x﹣1)(x+5)=0
x1=1,x2=﹣5.
或者x2+4x+4=9
(x+2)2=±3
∴x+2=3或x+2=﹣3
∴x1=1,x2=﹣5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,為原點,點,點,且,把繞點逆時針旋轉(zhuǎn),得,點,旋轉(zhuǎn)后的對應(yīng)點為,.
(1)點的坐標為______.
(2)解答下列問題:
①設(shè)的面積為,用含的式子表示,并寫出的取值范圍.
②當時,求點的坐標(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售某種商品,每件成本為30元.經(jīng)市場調(diào)研,售價為40元時,每月可銷售200件;售價每漲1元,每月銷售量將減少10件.該商場每月要在這種商品上盈利2160元的同時.盡可能的減少庫存,那么這種商品售價應(yīng)該定為多少元?
(1)解:方法1:設(shè)這種商品的定價為元,由題意,得方程為: ;
方法2:設(shè)這種商品漲了元,由題意,得方程為: ;
(2)請你選擇一種方法,寫出完整的解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃利用一片空地建一個學生自行車車棚,其中一面靠墻,這堵墻的長度為12米.計劃建造車棚的面積為80平方米,已知現(xiàn)有的木板材料可使新建板墻的總長為26米.
(1)為了方便學生出行,學校決定在與墻平行的一面開一個2米寬的門,那么這個車棚的長和寬分別應(yīng)為多少米?
(2)如圖,為了方便學生取車,施工單位決定在車棚內(nèi)修建幾條等寬的小路,使得停放自行車的面積為54平方米,那么小路的寬為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E,若BF=12,AB=10,則AE的長為( )
A.16 B.15 C.14 D.13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△的面積;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在陽光下,小東同學測得一根長為米的竹竿的影長為米.
同一時刻米的竹竿的影長為________米.
同一時刻小東在測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在操場的第一級臺階上,測得落在第一級臺階上的影子長為米,第一級臺階的高為米,落在地面上的影子長為米,則樹的高度為________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點.∠AEF=90°,且EF交正方形外角∠DCG的平分線CF于點F,求證:AE=EF.
經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎(chǔ)上,同學們作了進一步的研究:
(1)小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結(jié)論“AE=EF”仍然成立。你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com