已知:如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過原點(diǎn)O作∠AOC的平分線交AB于點(diǎn)D,連接DC,過點(diǎn)D作DE⊥DC,交OA于點(diǎn)E.

(1)求過點(diǎn)E、D、C的拋物線的解析式;

(2)將∠EDC繞點(diǎn)D按順時針方向旋轉(zhuǎn)后,角的一邊與y軸的正半軸交于點(diǎn)F,另一邊與

線段OC交于點(diǎn)G.如果EF=2OG,求點(diǎn)G的坐標(biāo).

(3)對于(2)中的點(diǎn)G,在位于第一象限內(nèi)的該拋物線上是否存在點(diǎn)Q,使得直線GQ與

AB的交點(diǎn)P與點(diǎn)C、G構(gòu)成的△PCG是等腰三角形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存

在,請說明理由.

 

解:(1)∵OD平分∠AOC, ∠AOC=90°

∴∠AOD=∠DOC=45°

∵在矩形ABCD中,

∠BAO=∠B=∠BOC=90°,OA=BC=2,AB=OC=3

∴△AOD是等腰Rt△   ………………………………1分

∵∠AOE+∠BDC=∠BCD+∠BDC=90°

∴∠AOE=∠BCD

∴△AED≌△BDC

∴AE=DB=1

∴D(2,2),E(0,1),C(3,0)   …………………………2分

則過D、E、C三點(diǎn)的拋物線解析式為:  ……………3分

(2)DH⊥OC于點(diǎn)H,

∴∠DHO=90°

∵矩形 ABCD 中, ∠BAO=∠AOC=90°

∴四邊形AOHD是矩形

∴∠ADH=90°.

∴∠1+∠2=∠2+∠3=90°

∴∠1=∠3

∵AD=OA=2,

∴四邊形AOHD是正方形.

∴△FAD≌△GHD

∴FA=GH        ………………………………4分

∴設(shè)點(diǎn) G(x,0),

∴OG=x,GH=2-x

∵EF=2OG=2x,AE=1,

∴2-x=2x-1,

∴x=1.

∴G(1,0)         ……………………………………………5分

 (3)由題意可知點(diǎn)P若存在,則必在AB上,假設(shè)存在點(diǎn)P使△PCG是等腰三角形

1)當(dāng)點(diǎn)P為頂點(diǎn),既 CP=GP時,

易求得P1(2,2),既為點(diǎn)D時,

此時點(diǎn)Q、與點(diǎn)P1、點(diǎn)D重合,

∴點(diǎn)Q1(2,2)                  ……………………………………………6分

2)當(dāng)點(diǎn)C為頂點(diǎn),既 CP=CG=2時, 易求得P2(3,2)          

∴直線GP2的解析式:

求交點(diǎn)Q: 

 

可求的交點(diǎn)()和(-1,-2)

 

∵點(diǎn)Q在第一象限

∴Q2)            ……………………………………………7分

 

3)當(dāng)點(diǎn)G為頂點(diǎn),既 GP=CG=2時, 易求得P3(1,2)

∴直線GP3的解析式:

求交點(diǎn)Q:

 

可求的交點(diǎn)(

 

∴Q3)          ……………………………………………8分

 

所以,所求Q點(diǎn)的坐標(biāo)為Q1(2,2)、Q2)、Q3).

 

解析:略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個時,乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開始以2個單位/秒速度沿x軸正向運(yùn)動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運(yùn)動 ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,直線也隨即停止運(yùn)動.

(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個運(yùn)動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶______個時,乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個答案)

查看答案和解析>>

同步練習(xí)冊答案