如圖,已知Rt△ABC中,AC=3,BC=4,過直角頂點(diǎn)C作CA1⊥AB,垂足為A1,再過A1作A1C1⊥BC,垂足為C1,過C1作C1A2⊥AB,垂足為A2,再過A2作A2C2⊥BC,垂足為C2,…,這樣一直做下去,得到了一組線段CA1,A1C1,C1A2,…,則CA1=    ,=   
【答案】分析:由于在Rt△ABC中,AC=3,BC=4,所以AB=5,利用等面積法,可以求出CA1=;由于△BA5C4∽△BCA,根據(jù)相似三角形的性質(zhì),即,所以==
解答:解:在Rt△ABC中,AC=3,BC=4,
∴AB=,
又因為CA1⊥AB,
AB•CA1=AC•BC,
即CA1===
∵C4A5⊥AB,
∴△BA5C4∽△BCA,
,
==
所以應(yīng)填
點(diǎn)評:本題重點(diǎn)考查了相似三角形的判定和性質(zhì),其中相似三角形的性質(zhì)“相似三角形的對應(yīng)邊上高的比等于相似比”是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,BD的垂直平分線分別交AB,BC于點(diǎn)E、F,CD=CG.
(1)請以圖中的點(diǎn)為頂點(diǎn)(不增加其他的點(diǎn))分別構(gòu)造兩個菱形和兩個等腰梯形.那么,構(gòu)成菱形的四個頂點(diǎn)是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個頂點(diǎn)是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請你各選擇其中一個圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點(diǎn)B作弦BF交AD于點(diǎn)精英家教網(wǎng)E,交⊙O于點(diǎn)F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長線上一點(diǎn),PE⊥AB交BA延長線于E,PF⊥AC交AC延長線于F,D為BC中點(diǎn),連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過點(diǎn)A做AE⊥AB,且AE=15,連接BE交AC于點(diǎn)P.
(1)求PA的長;
(2)以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習(xí)冊答案