(2010•密云縣)已知一次函數(shù)y=kx-3的圖象經(jīng)過點M(-2,1),求此圖象與x、y軸的交點坐標.
【答案】分析:把點M的坐標代入一次函數(shù)即可求得k的值,然后讓橫坐標等于0得到圖象與y軸的交點;讓縱坐標等于0得到圖象與y軸的交點.
解答:解:∵一次函數(shù)y=kx-3的圖象經(jīng)過點M(-2,1),
∴-2k-3=1.
解得:k=-2.
∴此一次函數(shù)的解析式為y=-2x-3.
令y=0,可得x=-
∴一次函數(shù)的圖象與x軸的交點坐標為(-,0).
令x=0,可得y=-3.
∴一次函數(shù)的圖象與y軸的交點坐標為(0,-3).
點評:本題考查的知識點是:在這條直線上的各點的坐標一定適合這條直線的解析式;x軸上的點縱坐標為0;y軸上的點橫坐標為0.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•密云縣)如圖,將腰長為的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點A在y軸上,點B在拋物線y=ax2+ax-2上,點C的坐標為(-1,0).
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關(guān)系式為______,其頂點坐標為______;
(3)將三角板ABC繞頂點A逆時針方向旋轉(zhuǎn)90°,到達△AB′C′的位置.請判斷點B′、C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市密云縣中考數(shù)學試卷(解析版) 題型:解答題

(2010•密云縣)如圖,將腰長為的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點A在y軸上,點B在拋物線y=ax2+ax-2上,點C的坐標為(-1,0).
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關(guān)系式為______,其頂點坐標為______;
(3)將三角板ABC繞頂點A逆時針方向旋轉(zhuǎn)90°,到達△AB′C′的位置.請判斷點B′、C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市密云縣中考數(shù)學試卷(解析版) 題型:解答題

(2010•密云縣)已知一次函數(shù)y=kx-3的圖象經(jīng)過點M(-2,1),求此圖象與x、y軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市密云縣中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•密云縣二模)已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)由拋物線對稱軸知識我們已經(jīng)知道:直線x=m,即為過點(m,0)平行于y軸的直線,類似地,直線y=m,即為過點(0,m)平行于x軸的直線、請結(jié)合圖象回答:當直線y=m與這兩條拋物線有且只有四個交點,實數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個單位長度,試回答(2)中的問題.

查看答案和解析>>

同步練習冊答案