如圖①,在Rt△ABC中,∠C=90°,邊BC的長為20cm,邊AC的長為hcm,在此三角形內(nèi)有一個(gè)矩形CFED,點(diǎn)D,E,F(xiàn)分別在AC,AB,BC上,設(shè)AD的長為xcm,矩形CFED的面積為y(單位:cm2).
(1)當(dāng)h等于30時(shí),求y與x的函數(shù)關(guān)系式;(不要求寫出自變量x的取值范圍)
(2)在(1)的條件下,矩形CFED的面積能否為180cm2?請說明理由;
(3)若y與x的函數(shù)圖象如圖②所示,求此時(shí)h的值.
(參考公式:二次函數(shù)y=ax2+bx+c,當(dāng)x=-
b
2a
時(shí),y最大(。┲=
4ac-b2
4a
.)
(1)∵AC=30,AD=x,
∴CD=30-x.
∵四邊形CFED為矩形,
∴DEBC.
DE
BC
=
AD
AC
,即
DE
20
=
x
30

∴DE=
2
3
x.
∴y=
2
3
x(30-x).
即y=-
2
3
x2+20x.

(2)∵
4ac-b2
4a
=
4×(-
2
3
)×0-202
4×(-
2
3
)
=150
,
∴y的最大值為150.
∵150<180,
∴矩形CFED的面積不能為180cm2

(3)由圖象可知,當(dāng)x=10時(shí),y=150.
當(dāng)x=10時(shí),CD=h-10,DE=
200
h
,
200
h
(h-10)=150,
解得h=40.
經(jīng)檢驗(yàn)h=40是方程的解.
∴h=40.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx-3a過點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.
(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形為直角梯形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,己知Rt△OAB的斜邊OA在x軸正半軸上,直角頂點(diǎn)B在第一象限,OA=5,OB=
5

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求經(jīng)過O、A、B三點(diǎn)且對稱軸平行于y軸的拋物線的解析式,并確定拋物線頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ADBC,BA=CD,AD的長為4,S梯形ABCD=9.已知點(diǎn)A、B的坐標(biāo)分別為(1,0)和(0,3).
(1)求點(diǎn)C的坐標(biāo);
(2)取點(diǎn)E(0,1),連接DE并延長交AB于P試猜想DF與AB之間的關(guān)系,并證明你的結(jié)論;
(3)將梯形ABCD繞點(diǎn)A旋轉(zhuǎn)180°后成梯形AB′C′D′,求對稱軸為直線x=3,且過A、B′兩點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,臨沂三河口大橋有一段拋物線行的工橋梁,拋物線的表達(dá)式為y=ax2+bx,小強(qiáng)騎自行車從拱梁一端O沿直線勻速穿過拱梁部分的橋面OC,當(dāng)小強(qiáng)騎自行車行駛10秒時(shí)和20秒時(shí)拱梁的高度相同,則小強(qiáng)騎自行車通過拱梁部分的橋面OC共需______秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

畫出拋物線y=4(x-3)2+2的大致圖象,寫出它的最值和增減性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c經(jīng)過A(1,1)、B(0,4)兩點(diǎn),M為拋物線的頂點(diǎn).
(1)求這條拋物線的表達(dá)式及頂點(diǎn)M的坐標(biāo);
(2)設(shè)由(1)求得的拋物線的對稱軸為直線l,點(diǎn)A關(guān)于直線l的對稱點(diǎn)為點(diǎn)C,AC與直線l相交于點(diǎn)D,聯(lián)結(jié)OD、OC.請直接寫出C與D兩點(diǎn)的坐標(biāo),并求∠COM+∠DOM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)A,它的對稱軸x=2與x軸交于點(diǎn)C,直線y=-2x-1經(jīng)過拋物線上一點(diǎn)B(-2,m),且與y軸、直線x=2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點(diǎn);
(3)若P(x,y)是該拋物線上的一個(gè)動點(diǎn),是否存在這樣的點(diǎn)P,使得PB=PE?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

蔬菜基地種植某種蔬菜,由市場行情分析知,1月份至6月份這種蔬菜的上市時(shí)間x(月份)與市場售價(jià)p(元/千克)的關(guān)系如下表:
上市時(shí)間x(月份)123456
市場售價(jià)p(元/千克)10.597.564.53
這種蔬菜每千克的種植成本y(元/千克)與上市時(shí)間x(月份)滿足一個(gè)函數(shù)關(guān)系,這個(gè)函數(shù)的圖象是拋物線的一段(如圖).

(1)寫出上表中表示的市場售價(jià)p(元/千克)關(guān)于上市時(shí)間x(月份)的函數(shù)關(guān)系式______;
(2)若圖中拋物線過A,B,C點(diǎn),寫出拋物線對應(yīng)的函數(shù)關(guān)系式______;
(3)由以上信息分析,______月份上市出售這種蔬菜每千克的收益最大,最大值為______元(收益=市場售價(jià)一種植成本).

查看答案和解析>>

同步練習(xí)冊答案