【題目】若函數(shù)y=(m+1)x|m|是正比例函數(shù),則該函數(shù)的圖象經(jīng)過第象限.

【答案】一、三
【解析】解:由題意得:|m|=1,且m+1≠0,
解得:m=1,
則m+1=2>0,
則該函數(shù)的圖象經(jīng)過第一、三象限,
故答案為:一、三.
根據(jù)一次函數(shù)定義可得:|m|=1,且m+1≠0,計算出m的值,再根據(jù)一次函數(shù)的性質(zhì)進(jìn)而可得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列的計算中,正確的是( )
A.m3+m2=m5
B.m5÷m2=m3
C.(2m)3=6m3
D.(m+1)2 =m2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把a(bǔ)2﹣4a多項式分解因式,結(jié)果正確的是(  )

A. a(a﹣4) B. (a+2)(a﹣2) C. a(a+2)(a﹣2) D. (a﹣2)2﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(﹣3,﹣2),B(2,﹣2),C(3,1),D(﹣2,1)四個點.
(1)在圖中描出A,B,C,D四個點,并順次連接點A,B,C,D,A.
(2)直接寫出線段AB,CD之間的關(guān)系.
(3)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,ADBC于點D,BC=12cm,AD=8cm.點P從點B出發(fā),在線段BC上以每秒3cm的速度向點C勻速運動,與此同時,垂直于AD的直線m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交AB,AC,AD于E,F(xiàn),H,當(dāng)點P到達(dá)點C時,點P與直線m同時停止運動,設(shè)運動時間為t秒(t0).

(1)連接DE、DF,當(dāng)t為何值時,四邊形AEDF為菱形?

(2)連接PE、PF,在整個運動過程中,PEF的面積是否存在最大值?若存在,試求當(dāng)PEF的面積最大時,線段BP的長.

(3)是否存在某一時刻t,使點F在線段EP的中垂線上?若存在,請求出此時刻t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(1,2),B(3,1),C(4,3).

(1)作ABC關(guān)于y軸的對稱圖形A1B1C1,寫出點C1的坐標(biāo);

(2)直線m平行于x軸,在直線m上求作一點P使得ABP的周長最小,請在圖中畫出P點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:m3﹣4m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BHx軸,交x軸于點H.

(1)求拋物線的表達(dá)式;

(2)直接寫出點C的坐標(biāo),并求出ABC的面積;

(3)點P是拋物線上一動點,且位于第四象限,當(dāng)ABP的面積為6時,求出點P的坐標(biāo);

(4)若點M在直線BH上運動,點N在x軸上運動,當(dāng)以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時CMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)解方程:(x+1)2=64;
(2)計算:(﹣2)3× + ×( 2

查看答案和解析>>

同步練習(xí)冊答案