(2005•無錫)設(shè)x1、x2是方程x2-2x-2=0的兩個實數(shù)根,則x1+x2=    ;x1•x2=   
【答案】分析:根據(jù)一元二次方程根與系數(shù)的關(guān)系計算即可.
解答:解:∵x1、x2是方程x2-2x-2=0的兩個實數(shù)根
∴x1+x2=2,x1•x2=-2.
故填2和-2
點評:本題考查了一元二次方程根與系數(shù)的關(guān)系,設(shè)x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的兩個實數(shù)根,則x1+x2=,x1x2=
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(17)(解析版) 題型:解答題

(2005•無錫)已知,點P是正方形ABCD內(nèi)的一點,連PA、PB、PC.
(1)將△PAB繞點B順時針旋轉(zhuǎn)90°到△P′CB的位置(如圖1).
①設(shè)AB的長為a,PB的長為b(b<a),求△PAB旋轉(zhuǎn)到△P′CB的過程中邊PA所掃過區(qū)域(圖1中陰影部分)的面積;
②若PA=2,PB=4,∠APB=135°,求PC的長;
(2)如圖2,若PA2+PC2=2PB2,請說明點P必在對角線AC上.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《三角形》(14)(解析版) 題型:解答題

(2005•無錫)已知,點P是正方形ABCD內(nèi)的一點,連PA、PB、PC.
(1)將△PAB繞點B順時針旋轉(zhuǎn)90°到△P′CB的位置(如圖1).
①設(shè)AB的長為a,PB的長為b(b<a),求△PAB旋轉(zhuǎn)到△P′CB的過程中邊PA所掃過區(qū)域(圖1中陰影部分)的面積;
②若PA=2,PB=4,∠APB=135°,求PC的長;
(2)如圖2,若PA2+PC2=2PB2,請說明點P必在對角線AC上.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一元二次方程》(04)(解析版) 題型:填空題

(2005•無錫)設(shè)x1、x2是方程x2-2x-2=0的兩個實數(shù)根,則x1+x2=    ;x1•x2=   

查看答案和解析>>

科目:初中數(shù)學 來源:2007年福建省漳州市一中分校九年級數(shù)學綜合試卷(解析版) 題型:解答題

(2005•無錫)如圖,已知矩形ABCD的邊長AB=2,BC=3,點P是AD邊上的一動點(P異于A、D),Q是BC邊上的任意一點.連AQ、DQ,過P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求證:△APE∽△ADQ;
(2)設(shè)AP的長為x,試求△PEF的面積S△PEF關(guān)于x的函數(shù)關(guān)系式,并求當P在何處時,S△PEF取得最大值,最大值為多少?
(3)當Q在何處時,△ADQ的周長最小?(須給出確定Q在何處的過程或方法,不必給出證明)

查看答案和解析>>

同步練習冊答案