【題目】
(1)計算: ﹣4sin45°+(﹣2012)0;
(2)化簡: ÷(x+1).

【答案】
(1)解:原式=2 ﹣4× +1

=2 ﹣2 +1

=1


(2)解:原式= ×

=


【解析】(1)根據(jù)特殊角的三角函數(shù)值、零指數(shù)冪求出sin45°和(﹣2012)0的值,再代入求出即可;(2)先分解因式,同時把除法變成乘法,再約分,即可求出答案.
【考點精析】通過靈活運(yùn)用分式的混合運(yùn)算和零指數(shù)冪法則,掌握運(yùn)算的順序:第一級運(yùn)算是加法和減法;第二級運(yùn)算是乘法和除法;第三級運(yùn)算是乘方.如果一個式子里含有幾級運(yùn)算,那么先做第三級運(yùn)算,再作第二級運(yùn)算,最后再做第一級運(yùn)算;如果有括號先做括號里面的運(yùn)算.如順口溜:"先三后二再做一,有了括號先做里."當(dāng)有多層括號時,先算括號內(nèi)的運(yùn)算,從里向外{[(?)]};零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù))即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,點D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.
(1)求證:AC是⊙O的切線;
(2)當(dāng)BD是⊙O的直徑時(如圖2),求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國務(wù)院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進(jìn)一步普及足球知識,傳播足球文化,我市舉行了“足球進(jìn)校園”知識競賽活動,為了解足球知識的普及情況,隨機(jī)抽取了部分獲獎情況進(jìn)行整理,得到下列不完整的統(tǒng)計圖表:

獲獎等次

頻數(shù)

頻率

一等獎

10

0.05

二等獎

20

0.10

三等獎

30

b

優(yōu)勝獎

a

0.30

鼓勵獎

80

0.40

請根據(jù)所給信息,解答下列問題:

(1)a= , b= , 且補(bǔ)全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計圖來描述獲獎分布情況,問獲得優(yōu)勝獎對應(yīng)的扇形圓心角的度數(shù)是多少?
(3)在這次競賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎,若從這四位同學(xué)中隨機(jī)選取兩位同學(xué)代表我市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組和分式方程:
(1)
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x+2的圖象與x軸交于A,與y軸交于點C,點B的坐標(biāo)為(a,0),(其中a>0),直線l過動點M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點D、E,P點在y軸上(P點異于C點)滿足PE=CE,直線PD與x軸交于點Q,連接PA.

(1)寫出A、C兩點的坐標(biāo);
(2)當(dāng)0<m<1時,若△PAQ是以P為頂點的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點的倍邊三角形),求出m的值;
(3)當(dāng)1<m<2時,是否存在實數(shù)m,使CDAQ=PQDE?若能,求出m的值(用含a的代數(shù)式表示);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,DF⊥AB于點D,交弦AC于點E,F(xiàn)C=FE.
(1)求證:FC是⊙O的切線;
(2)若⊙O的半徑為5,cos∠ECF= ,求弦AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,切點分別為A、B兩點,點C在⊙O上,如果∠ACB=70°,那么∠P的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,已知A、B為直線l上兩點,點C為直線l上方一動點,連接AC、BC,分別以AC、BC為邊向△ABC外作正方形CADF和正方形CBEG,過點D作DD1⊥l于點D1 , 過點E作EE1⊥l于點E1
(1)如圖②,當(dāng)點E恰好在直線l上時(此時E1與E重合),試說明DD1=AB;
(2)在圖①中,當(dāng)D、E兩點都在直線l的上方時,試探求三條線段DD1、EE1、AB之間的數(shù)量關(guān)系,并說明理由;
(3)如圖③,當(dāng)點E在直線l的下方時,請直接寫出三條線段DD1、EE1、AB之間的數(shù)量關(guān)系.(不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
<a<
⑤b>c.
其中含所有正確結(jié)論的選項是(  )

A.①③
B.①③④
C.②④⑤
D.①③④⑤

查看答案和解析>>

同步練習(xí)冊答案