試題分析:(1)由AB為⊙O的直角,根據(jù)圓周角定理得到∠ACB=90°,即∠1+∠3=90°,再根據(jù)切線的性質(zhì)得OC⊥CG,則∠3+∠GCA=90°,然后利用等量代換即可得到∠1=∠GCA;
(2)由DE⊥AB得到∠AEF=90°,再根據(jù)等角的余角相等可得到∴∠AFE=∠ABC=m°,然后利用對頂角相等有∠DFC=∠AFE=m°;
(3)由∠GCA=∠1,∠DFC=∠ABC易得∠GCF=∠GFC,根據(jù)等腰三角形的判定得到GF=GC,由GD=GF得到GD=GC,則∠2=∠4,利用三角形內(nèi)角和得∠2+∠GCF=
×180°=90°,即∠DCF=90°,而∠ACB=90°,于是得到點B、C、D共線,然后根據(jù)旋轉(zhuǎn)的性質(zhì)得到△ABC以AB為腰的等腰三角形,且頂角∠BAC=β,則根據(jù)三角形內(nèi)角和定理易得β=180°-2∠ABC.
試題解析:(1)證明:如圖:
∵AB為⊙O的直角,
∴∠ACB=90°,即∠1+∠3=90°,
∵GC為⊙O的切線,
∴OC⊥CG,
∴∠OCG=90°,即∠3+∠GCA=90°,
∴∠1=∠GCA,
即∠GCA=∠OCB;
(2)∵∠ACB=90°,
∴∠ABC+∠BAC=90°,
∵DE⊥AB,
∴∠AEF=90°,
∴∠AFE+∠EAF=90°,
∴∠AFE=∠ABC=m°,
∴∠DFC=∠AFE=m°;
(3)∠β=180°-2∠ABC.理由如下:
∵∠GCA=∠1,∠DFC=∠ABC,
而∠1=∠ABC,
∴∠GCF=∠GFC,
∴GF=GC,
∵G為DF的中點,
∴GD=GF,
∴GD=GC,
∴∠2=∠4,
∴∠2+∠GCF= ×180°=90°,即∠DCF=90°,
而∠ACB=90°,
∴點B、C、D共線,
∵以點A為旋轉(zhuǎn)中心,以∠β(0°<β<90°)為旋轉(zhuǎn)角度將B旋轉(zhuǎn)到點D,
∴AD=AB,∠BAD=β,
∴∠ABD=∠ADB,
∴β+2∠ABC=180°,
即β=180°-2∠ABC.
考點: 圓的綜合題.