精英家教網(wǎng)如圖,在△ABC中,已知∠DBC=60°,AC>BC,又△ABC′、△BCA′、△CAB′都是△ABC形外的等邊三角形,而點D在AC上,且BC=DC
(1)證明:△C′BD≌△B′DC;
(2)證明:△AC′D≌△DB′A;
(3)對△ABC、△ABC′、△BCA′、△CAB′,從面積大小關系上,你能得出什么結論?
分析:(1)先證明:△C′BD≌△ABC,再證明△ABC≌△B′DC;
(2)根據(jù)(1)的結論,可以證明:△AC′D≌△DB′A;
(3)由角的不等,導出邊的不等關系,這是探索面積不等關系的關鍵.
解答:(1)△C′BD與△ABC中,BC=DC,AB=BC′,∠C′BD=60°+∠ABD=∠ABC,
∴△C′BD≌△ABC,∴C′D=AC精英家教網(wǎng)
又在△BCA與△DCB′中,BC=DC,AC=B′C,∠ACB=∠B′CD=60°,
∴△BCA≌△DCB′.∴DB′=BA.
∴△C′BD≌△B′DC

(2)由(1)的結論知:
C′D=B′C=AB′,
B′D=BC′=AC′,
又∵AD=AD,
∴△AC′D≌△DB′A.

(3)S△AB′C>S△ABC′>S△ABC>S△A′BC;
S△AB′C=
1
2
×
3
2
×AC2

S△A′BC=
1
2
×
3
2
×BC2
,
S△ABC′=
1
2
×
3
2
×AB2
,
S△ABC=
1
2
× 
3
2
×AC×BC
,
因為AB2=(AC2+BC2-2AC×BC×cos60°)
整理得S△ACB′+S△BCA′=S△ABC′+S△ABC
點評:考查全等三角形的證明,考查在三角形中,已知兩邊和夾角求第三邊的計算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案