【題目】如圖是某水庫大壩的橫截面示意圖,已知AD∥BC,且AD、BC之間的距離為15米,背水坡CD的坡度i=1:0.6,為提高大壩的防洪能力,需對大壩進行加固,加固后大壩頂端AE比原來的頂端AD加寬了2米,背水坡EF的坡度i=3:4,則大壩底端增加的長度CF是( )米.

A.7
B.11
C.13
D.20

【答案】C
【解析】解:過D作DG⊥BC于G,EH⊥BC于H,
∴GH=DE=2,
∵DG=EH=15,背水坡CD的坡度i=1:0.6,背水坡EF的坡度i=3:4,
∴CG=9,HF=20,
∴CF=GH+HF﹣CG=13米,
故選C.

【考點精析】掌握關于坡度坡角問題是解答本題的根本,需要知道坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中.點E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形.連接AC交EF于點G.過點G作GH⊥CE于點H.若 ,則 =( )

A.6
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解題: 學習了二次根式后,你會發(fā)現(xiàn)一些含有根號的式子可以寫成另一個式子的平方,如3+2 =(1+ 2 , 我們來進行以下的探索:
設a+b =(m+n 2(其中a,b,m,n都是正整數(shù)),則有a+b =m2+2n2+2mn ,∴a=m+2n2 , b=2mn
, 這樣就得出了把類似a+b 的式子化為平方式的方法.
請仿照上述方法探索并解決下列問題:
(1)當a,b,m,n都為正整數(shù)時,若a﹣b =(m﹣n 2 , 用含m,n的式子分別表示a,b,得a= , b=;
(2)利用上述方法,找一組正整數(shù)a,b,m,n填空: =( 2
(3)a﹣4 =(m﹣n 2且a,m,n都為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C、D兩點在以AB為直徑的半圓O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.

(1)求DE的長.
(2)求證:AC=2OE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB、AD是⊙O的弦,點C是DO的延長線與弦AB的交點,∠ABO=30°,OB=2.

(1)求弦AB的長;
(2)若∠D=20°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=(x﹣1)2﹣1.

(1)該拋物線的對稱軸是 , 頂點坐標;
(2)選取適當?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標系內描點畫出該拋物線的圖象;

x

y


(3)根據(jù)圖象,直接寫出當y<0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示在平面直角坐標系中,有長方形OABC,O是坐標原點,A(a,0,C0b),且a,b滿足

1)求A,B,C三點坐標;

2)如圖2所示,長方形對角線OBAC交于D點,若有一點PA點出發(fā),以1單位/秒速度向x軸負方向勻速運動,同時另一點QO出發(fā),以2個單位/秒,沿長方形邊長O-C-B順時針勻速運動,當Q到達B點時P、Q同時停止運動,設P點開始運動時間為t,請問:當t為何值時有SOCP≤SODQ ?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣2(k﹣1)x+k2=0有兩個實數(shù)根x1 , x2
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育館用大小相同的長方形木板鑲嵌地面,第1次鋪2塊如圖①;第2次把第1次鋪的完全圍起來,如圖②,此時共使用木板12塊;第3次把第2次鋪的完全圍起來,如圖③:

1)依此方法,第4次鋪完后,共使用的木板數(shù)為______

2)依此方法,第10次鋪完后,共使用的木板數(shù)為______

3)依此方法,第n次鋪完后,共使用的木板數(shù)為______

查看答案和解析>>

同步練習冊答案