【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉動的支點,點E是欄桿兩段的聯(lián)結點.當車輛經過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標志牌為( )(參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. B. C. D.
【答案】A
【解析】
試題分析:過點A作BC的平行線AG,過點E作EH⊥AG于H,則∠BAG=90°,∠EHA=90°.先求出∠AEH=53°,則∠EAH=37°,然后在△EAH中,利用正弦函數的定義得出EH=AEsin∠EAH,則欄桿EF段距離地面的高度為:AB+EH,代入數值計算即可.
解:如圖,過點A作BC的平行線AG,過點E作EH⊥AG于H,
則∠EHG=∠HEF=90°,
∵∠AEF=143°,
∴∠AEH=∠AEF﹣∠HEF=53°,
∠EAH=37°,
在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,
∴EH=AEsin∠EAH≈1.2×0.60=0.72(米),
∵AB=1.2米,
∴AB+EH≈1.2+0.72=1.92≈1.9米.
故選:A.
科目:初中數學 來源: 題型:
【題目】如圖,點E是矩形ABCD邊AD上的一個動點,且與點A、點D不重合,連結BE、CE,過點B作BF∥CE,過點C作CF∥BE,交點為F點,連接AF、DF分別交BC于點G、H,則下列結論錯誤的是( 。
A. GH=BC B. S△BGF+S△CHF=S△BCF
C. S四邊形BFCE=ABAD D. 當點E為AD中點時,四邊形BECF為菱形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動,他們的運動時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由
(2)判斷此時線段PC和線段PQ的關系,并說明理由。
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變,設點Q的運動速度為x cm/s,是否存在實數x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ADE中,∠DAE=90°,C是邊AE上任意一點(點C與點A、E不重合),以AC為一直角邊在Rt△ADE的外部作Rt△ABC,∠BAC=90°,連接BE、CD.
(1)在圖1中,若AC=AB,AE=AD,現將圖1中的Rt△ADE繞著點A順時針旋轉銳角α,得到圖2,那么線段BE.CD之間有怎樣的關系,寫出結論,并說明理由;
(2)在圖1中,若CA=3,AB=5,AE=10,AD=6,將圖1中的Rt△ADE繞著點A順時針旋轉銳角α,得到圖3,連接BD、CE.
①求證:△ABE∽△ACD;
②計算:BD2+CE2的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】周末,小明和哥哥一起騎自行車從家里出發(fā)到昌南湖游玩,從家出發(fā)0.5小時后到達陶溪川,游玩一段時間后按原速前往昌南湖.小明離家80分鐘后,爸爸駕車沿相同路線前往昌南湖,如圖是他們離家的路程y(km)與小明離家時間x(h)的函數圖象,已知爸爸駕車的速度是小明騎車速度的3倍.
(1)小明騎車的速度為_____km/h,爸爸駕車的速度為_____km/h.
(2)小明從家到陶溪川的路程y與時間x的函數關系式為_____,他從陶溪川到昌南湖的路程y與時間x的函數關系式為______,爸爸從家到昌南湖的路程,與時間x的函數關系式為______.
(3)小明從家出發(fā)多少小時后被爸爸追上?此時離家多遠?
(4)如果小明比爸爸晚10分鐘到達昌南湖,那么昌南湖離家有多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠ABC和∠ACB的平分線相交于點F,過點F作DE∥BC,交AB于D,交AC于E,下列結論正確的是( 。
①BD=CE②△BDF,△CEF都是等腰三角形③BD+CE=DE④△ADE的周長為AB+AC.
A.①②B.③④C.①②③D.②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖 1,在 Rt△ABC 中,∠ACB=90°,AC=BC,D 是 BC 上的一點,過點 D 作 DE⊥AB,垂足為點 E,F 為 AD 的中點,連接 CF、EF.
(1)猜想CF與EF的關系,并說明理由;
(2)如圖2,連接BF,若∠AEF=30°,求∠BFE 的度數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com