【題目】我市水產(chǎn)養(yǎng)殖專(zhuān)業(yè)戶(hù)王大爺承包了30畝水塘,分別養(yǎng)殖甲魚(yú)和桂魚(yú),有關(guān)成本、銷(xiāo)售情況如下表:

養(yǎng)殖種類(lèi)

成本(萬(wàn)元/畝)

銷(xiāo)售額(萬(wàn)元/畝)

甲魚(yú)

2.4

3

桂魚(yú)

2

2.5


(1)2010年,王大爺養(yǎng)殖甲魚(yú)20畝,桂魚(yú)10畝,求王大爺這一年共收益多少萬(wàn)元?(收益=銷(xiāo)售額﹣成本)
(2)2011年,王大爺繼續(xù)用這30畝水塘全部養(yǎng)殖甲魚(yú)和桂魚(yú),計(jì)劃投入成本不超過(guò)70萬(wàn)元.若每畝養(yǎng)殖的成本、銷(xiāo)售額與2010年相同,要獲得最大收益,他應(yīng)養(yǎng)殖甲魚(yú)和桂魚(yú)各多少畝?
(3)已知甲魚(yú)每畝需要飼料500kg,桂魚(yú)每畝需要飼料700kg,根據(jù)(2)中的養(yǎng)殖畝數(shù),為了節(jié)約運(yùn)輸成本,實(shí)際使用的運(yùn)輸車(chē)輛每次裝載飼料的總量是原計(jì)劃每次裝載總量的2倍,結(jié)果運(yùn)輸養(yǎng)殖所需要全部飼料比原計(jì)劃減少了2次,求王大爺原定的運(yùn)輸車(chē)輛每次可裝載飼料多少千克?

【答案】
(1)解:2010年王大爺?shù)氖找鏋椋?

20×(3﹣2.4)+10×(2.5﹣2)

=17(萬(wàn)元),

答:王大爺這一年共收益17萬(wàn)元


(2)解:設(shè)養(yǎng)殖甲魚(yú)x畝,則養(yǎng)殖桂魚(yú)(30﹣x)畝,

由題意得2.4x+2(30﹣x)≤70

解得x≤25,

又設(shè)王大爺可獲得收益為y萬(wàn)元,

則y=0.6x+0.5(30﹣x),

即y= x+15.

∵函數(shù)值y隨x的增大而增大,

∴當(dāng)x=25時(shí),可獲得最大收益.

答:要獲得最大收益,應(yīng)養(yǎng)殖甲魚(yú)25畝,桂魚(yú)5畝


(3)解:設(shè)大爺原定的運(yùn)輸車(chē)輛每次可裝載飼料a(kg),

由(2)得,共需要飼料為500×25+700×5=16000(kg),

根據(jù)題意得 =2,

解得a=4000,

把a(bǔ)=4000代入原方程公分母得,2a=2×4000=8000≠0,

故a=4000是原方程的解.

答:王大爺原定的運(yùn)輸車(chē)輛每次可裝載飼料4000kg


【解析】(1)根據(jù)已知列算式求解;(2)先設(shè)養(yǎng)殖甲魚(yú)x畝,則養(yǎng)殖桂魚(yú)(30﹣x)畝列不等式,求出x的取值,再表示出王大爺可獲得收益y萬(wàn)元函數(shù)關(guān)系式,求最大值;(3)設(shè)大爺原定的運(yùn)輸車(chē)輛每次可裝載飼料a(kg),結(jié)合(2)列分式方程求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷(xiāo)售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過(guò)市場(chǎng)銷(xiāo)售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷(xiāo)售商每月要完成不低于450臺(tái)的銷(xiāo)售任務(wù).
(1)試確定月銷(xiāo)售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷(xiāo)售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對(duì)角線(xiàn)OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,

(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過(guò)點(diǎn)E的反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)y=﹣2x經(jīng)過(guò)點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱(chēng)點(diǎn)P′在反比例函數(shù) (k≠0)的圖象上.
(1)求a的值;
(2)直接寫(xiě)出點(diǎn)P′的坐標(biāo);
(3)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A、B是反比例函數(shù)y= (k>0,x>0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P縱坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C勻速運(yùn)動(dòng),終點(diǎn)為C,過(guò)點(diǎn)P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設(shè)四邊形OMPN的面積為S,點(diǎn)P運(yùn)動(dòng)的時(shí)間為t,則S關(guān)于t的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰Rt△ABC中,∠C=90°,AC=1,過(guò)點(diǎn)C作直線(xiàn)l∥AB,F(xiàn)是l上的一點(diǎn),且AB=AF,則點(diǎn)F到直線(xiàn)BC的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖形既關(guān)于點(diǎn)O中心對(duì)稱(chēng),又關(guān)于直線(xiàn)AC,BD對(duì)稱(chēng),AC=10,BD=6,已知點(diǎn)E,M是線(xiàn)段AB上的動(dòng)點(diǎn)(不與端點(diǎn)重合),點(diǎn)O到EF,MN的距離分別為h1 , h2 , △OEF與△OGH組成的圖形稱(chēng)為蝶形.
(1)求蝶形面積S的最大值;
(2)當(dāng)以EH為直徑的圓與以MQ為直徑的圓重合時(shí),求h1與h2滿(mǎn)足的關(guān)系式,并求h1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以點(diǎn)C為圓心,CB為半徑的圓交AB于點(diǎn)D,則BD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣ ,y2)、點(diǎn)C( ,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 . 其中正確的結(jié)論有( 。
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案