按照如圖所示的操作步驟,若輸入x的值為2,則輸出的值為   
【答案】分析:根據(jù)運(yùn)算程序?qū)懗鏊闶,然后代入?shù)據(jù)進(jìn)行計(jì)算即可得解.
解答:解:由圖可知,運(yùn)算程序?yàn)椋▁+3)2-5,
當(dāng)x=2時(shí),(x+3)2-5=(2+3)2-5=25-5=20.
故答案為:20.
點(diǎn)評(píng):本題考查了代數(shù)式求值,是基礎(chǔ)題,根據(jù)圖表準(zhǔn)確寫(xiě)出運(yùn)算程序是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

取一張矩形的紙進(jìn)行折疊,具體操作過(guò)程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得 Rt△AB′E,如圖(2)所示;
第三步:沿EB′線(xiàn)折疊得折痕EF,如圖(3)所示;利用展開(kāi)圖(4)所示.
精英家教網(wǎng)
探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線(xiàn)EF的表達(dá)式為y=kx-k (k<0)
①問(wèn):EF與拋物線(xiàn)y=-
1
8
x2
有幾個(gè)公共點(diǎn)?
②當(dāng)EF與拋物線(xiàn)只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求
x
y
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中華題王 數(shù)學(xué) 八年級(jí)上 (人教版) 人教版 題型:059

(如圖所示)取一張矩形的紙進(jìn)行折疊,具體操作過(guò)程如下:第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1);第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為,得Rt△,如圖(2);第三步:沿線(xiàn)折疊得折痕EF,如圖(3).利用展開(kāi)圖(4)探究:

(1)△AEF是什么三角形?證明你的結(jié)論;

(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

取一張矩形的紙進(jìn)行折疊,具體操作過(guò)程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得 Rt△AB′E,如圖(2)所示;
第三步:沿EB′線(xiàn)折疊得折痕EF,如圖(3)所示;利用展開(kāi)圖(4)所示.
作業(yè)寶
探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線(xiàn)EF的表達(dá)式為y=kx-k (k<0)
①問(wèn):EF與拋物線(xiàn)y=數(shù)學(xué)公式有幾個(gè)公共點(diǎn)?
②當(dāng)EF與拋物線(xiàn)只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求數(shù)學(xué)公式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江蘇省淮安市淮陰中學(xué)高一分班考試數(shù)學(xué)試卷(解析版) 題型:解答題

取一張矩形的紙進(jìn)行折疊,具體操作過(guò)程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得 Rt△AB′E,如圖(2)所示;
第三步:沿EB′線(xiàn)折疊得折痕EF,如圖(3)所示;利用展開(kāi)圖(4)所示.

探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線(xiàn)EF的表達(dá)式為y=kx-k (k<0)
①問(wèn):EF與拋物線(xiàn)y= 有幾個(gè)公共點(diǎn)?
②當(dāng)EF與拋物線(xiàn)只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案