如圖,拋物線y=ax2+bx+c關(guān)于直線x=1對稱,與坐標軸交與A,B,C三點,且AB=4,點D(2,數(shù)學公式)在拋物線上,直線l是一次函數(shù)y=kx-2(k≠0)的圖象,點O是坐標原點.
(1)求拋物線的解析式;
(2)若直線l平分四邊形OBDC的面積,求k的值;
(3)把拋物線向左平移1個單位,再向下平移2個單位,所得拋物線與直線l交于M,N兩點,問在y軸正半軸上是否存在一定點P,使得不論k取何值,直線PM與PN總是關(guān)于y軸對稱?若存在,求出P點坐標;若不存在,請說明理由.

解:(1)因為拋物線關(guān)于直線x=1對稱,AB=4,所以A(-1,0),B(3,0),
設拋物線的解析式為y=a(x+1)(x-3),
∵點D(2,)在拋物線上,
=a×3×(-1),解得a=,
∴拋物線解析式為:y=(x+1)(x-3)=x2+x+

(2)拋物線解析式為:y=x2+x+,令x=0,得y=,∴C(0,),
∵D(2,),∴CD∥OB,直線CD解析式為y=
直線l解析式為y=kx-2,令y=0,得x=;令y=,得x=
如答圖1所示,設直線l分別與OB、CD交于點E、F,則E(,0),F(xiàn)(,),
OE=,BE=3-,CF=,DF=2-
∵直線l平分四邊形OBDC的面積,
∴S梯形OEFC=S梯形FDBE
(OE+CF)•OC=(FD+BE)•OC,
∴OE+CF=FD+BE,即:+=(3-)+(2-),
解方程得:k=,經(jīng)檢驗k=是原方程的解且符合題意,
∴k=

(3)假設存在符合題意的點P,其坐標為(0,t).
拋物線解析式為:y=x2+x+=(x-1)2+2,
把拋物線向左平移1個單位,再向下平移2個單位,所得拋物線解析式為:y=x2
依題意畫出圖形,如答圖2所示,過點M作MD⊥y軸于點D,NE⊥y軸于點E,
設M(xm,ym),N(xn,yn),則MD=-xm,PD=t-ym;NE=xn,PE=t-yn
∵直線PM與PN關(guān)于y軸對稱,∴∠MPD=∠NPE,
又∠MDP=∠NEP=90°,
∴Rt△PMD∽Rt△PNE,
,即 ①,
∵點M、N在直線y=kx-2上,∴ym=kxm-2,yn=kxn-2,
代入①式化簡得:(t+2)(xm+xn)=2kxmxn
把y=kx-2代入y=x2.,整理得:x2+2kx-4=0,
∴xm+xn=-2k,xmxn=-4,代入②式解得:t=2,符合條件.
所以在y軸正半軸上存在一個定點P(0,2),使得不論k取何值,直線PM與PN總是關(guān)于y軸對稱.
分析:(1)首先求出點A、B的坐標,然后利用交點式、待定系數(shù)法求出拋物線的解析式;
(2)首先求出點C坐標,確定CD∥OB;由題意,直線l平分四邊形OBDC的面積,則S梯形OEFC=S梯形FDBE,據(jù)此列方程求出k的值;
(3)首先求出平移變換后的拋物線解析式,如答圖2所示,然后證明Rt△PMD∽Rt△PNE,由相似三角形比例線段關(guān)系得到式①:,化簡之后變?yōu)槭舰冢海╰+2)(xm+xn)=2kxmxn;最后利用一元二次方程根與系數(shù)的關(guān)系求出t的值.
點評:本題是二次函數(shù)綜合題,考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、拋物線的平移、相似三角形、一元二次方程根與系數(shù)關(guān)系、圖形面積計算等知識點,有一定的難度.第(2)問的解題要點是根據(jù)S梯形OEFC=S梯形FDBE(如答圖1)列方程求解,第(3)問是存在型問題,綜合利用相似三角形的判定與性質(zhì)、函數(shù)圖象上點的坐標特征及一元二次方程根與系數(shù)關(guān)系求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標,寫出一條正確的結(jié)論,并通過計算說明;
(3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標原點,拋物線上一點C的橫坐標為1.
(1)求A,B兩點的坐標;
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當△MNC的面積最大時,求點M、N的坐標;
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案