已知如圖,△ABC內(nèi)切⊙O于D、E、F三點,內(nèi)切圓⊙O的半徑為1,∠C=60°,AB=5,則△ABC的周長為


  1. A.
    12
  2. B.
    14
  3. C.
    10+2數(shù)學公式
  4. D.
    10+數(shù)學公式
C
分析:連接OE、OF、OC,由已知條件求得∠OCE=30°,再根據(jù)直角三角形的性質(zhì)和勾股定理求出CE=CF=,由切線的性質(zhì)得BD=BE,AD=AF,則AD+BD=AF+BE=5,從而求得△ABC的周長.
解答:解:如圖,連接OE、OF、OC,
∵∠C=60°,
∴∠OCE=30°,
∵OE=1,
∴OC=2,CE=
∴CF=,
∵△ABC內(nèi)切⊙O于D、E、F三點,
∴BD=BE,AD=AF,
∵AB=5,
∴AD+BD=AF+BE=5,
∴△ABC的周長=AD+BD+AF+BE+CD+CE,
=5+5+2
=10+2
故選C.
點評:本題考查了三角形的內(nèi)切圓和內(nèi)心以及勾股定理,是基礎知識要熟練掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖:△ABC內(nèi)接于⊙O,P為BC邊延長線上的一點,PA為⊙O的切線,切點為A,若PA=6,PC=4,求
sinBsinACB
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,△ABC內(nèi)切⊙O于D、E、F三點,內(nèi)切圓⊙O的半徑為1,∠C=60°,AB=5,則△ABC的周長為( 。
A、12
B、14
C、10+2
3
D、10+
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC內(nèi)接于⊙O,且AB=AC=13,BC=24,PABC,割線PBD過圓心,交⊙O于另一個點D,聯(lián)結(jié)CD

1.⑴求證:PA是⊙O的切線;

2.⑵求⊙O的半徑及CD的長.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC內(nèi)接于⊙O,且AB=AC=13,BC=24,PABC,割線PBD過圓心,交⊙O于另一個點D,聯(lián)結(jié)CD

【小題1】⑴求證:PA是⊙O的切線;
【小題2】⑵求⊙O的半徑及CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年北京大興區(qū)九年級第一學期期末考試數(shù)學卷 題型:解答題

已知:如圖,△ABC內(nèi)接于⊙O,且AB=AC=13,BC=24,PABC,割線PBD過圓心,交⊙O于另一個點D,聯(lián)結(jié)CD

1.⑴求證:PA是⊙O的切線;

2.⑵求⊙O的半徑及CD的長.

 

查看答案和解析>>

同步練習冊答案