【題目】整式運算
(1)(x4)3÷(﹣x2)2+(﹣x2)3x2
(2)(x+3)(x﹣5)+2x(3x﹣1)
(3)(2b﹣a)(2a+b)﹣2(3a﹣2b)2
(4).
【答案】(1)0;(2)7x2﹣4x﹣15;(3)27ab﹣6b2﹣20a2;(4)3a2b﹣2ab2+1.
【解析】
(1)先算乘方,再算乘除,最后合并同類項即可;
(2)先利用多項式乘多項式、單項式乘多項式的法則計算乘法,再合并同類項即可;
(3)先利用完全平方公式計算,再利用多項式乘多項式、單項式乘多項式的法則計算乘法,然后合并同類項即可;
(4)先算積的乘方,再利用多項式除以單項式的法則計算即可.
解:(1)(x4)3÷(﹣x2)2+(﹣x2)3x2
=x12÷x4+(﹣x6)x2
=x8+(﹣x8)
=0;
(2)(x+3)(x﹣5)+2x(3x﹣1)
=x2﹣5x+3x﹣15+6x2﹣2x
=7x2﹣4x﹣15;
(3)(2b﹣a)(2a+b)﹣2(3a﹣2b)2
=4ab+2b2﹣2a2﹣ab﹣2(9a2﹣12ab+4b2)
=4ab+2b2﹣2a2﹣ab﹣18a2+24ab﹣8b2
=27ab﹣6b2﹣20a2;
(4)
.
科目:初中數學 來源: 題型:
【題目】一次函數y1=kx+b和y2=﹣4x+a的圖象如圖所示,且A(0,4),C(﹣2,0).
(1)由圖可知,不等式kx+b>0的解集是 ;
(2)若不等式kx+b>﹣4x+a的解集是x>1.
①求點B的坐標;
②求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一架飛機由A向B沿水平直線方向飛行,在航線AB的正下方有兩個山頭C、D.飛機在A處時,測得山頭C、D在飛機的前方,俯角分別為60°和30°.飛機飛行了6千米到B處時,往后測得山頭C的俯角為30°,而山頭D恰好在飛機的正下方.求山頭C、D之間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市在招商引資期間,把已經破產的油泵廠出租給外地某投資商,該投資商為了減少固定資產投資,將原來400平方米的正方形場地建成300平方米的長方形場地,并且長、寬的比為5:3,并且把原來的正方形鐵柵欄圍墻全部利用,圍成新場地的長方形圍墻,請問這些鐵柵欄是否夠用?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個以點D為頂點的45°角繞點D旋轉,使角的兩邊分別與AC、BC的延長線相交,交點分別為點E,F,DF與AC交于點M,DE與BC交于點N.
(1)如圖1,若CE=CF,求證:DE=DF;
(2)如圖2,在∠EDF繞點D旋轉的過程中:
①探究三條線段AB,CE,CF之間的數量關系,并說明理由;
②若CE=4,CF=2,求DN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一副直角三角板按如圖1 擺放在直線AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不動,將三角板MON 繞點O 以每秒8°的速度順時針方向旋轉t 秒.
(1)如圖2,當t= 秒時,OM 平分∠AOC,此時∠NOC﹣∠AOM= ;
(2)繼續(xù)旋轉三角板MON,如圖3,使得OM、ON 同時在直線OC 的右側,猜想∠NOC與∠AOM 有怎樣的數量關系?并說明理由(數量關系中不能含t);
(3)直線AD 的位置不變,若在三角板MON 開始順時針旋轉的同時,另一個三角板OBC也繞點O 以每秒2°的速度順時針旋轉,當OM 旋轉至射線OD 上時,兩個三角板同時停止運動.
①當t= 秒時,∠MOC=15°;
②請直接寫出在旋轉過程中,∠NOC 與∠AOM 的數量關系(數量關系中不能含t).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com