(本題12分)
【小題1】(1)學(xué)習(xí)《測量建筑物的高度》后,小明帶著卷尺、標桿,利用太陽光去測量旗桿的高度.參考示意圖1,他的測量方案如下:

第一步,測量數(shù)據(jù).測出CD=1.6米,CF=1.2米, AE=9米.
第二步,計算.
請你依據(jù)小明的測量方案計算出旗桿的高度.
【小題2】(2) 如圖2,校園內(nèi)旗桿周圍有護欄,下面有底 座.現(xiàn)在有卷尺、 標桿、平面鏡、測角儀等工具,請你選擇出必須的工具,設(shè)計一個測量方案以求出旗桿頂端到地面的距離.要求:在備用圖中畫出示意圖,說明需要測量的數(shù)據(jù).(注意不能到達底部點N對完成測量任務(wù)的影響,不需計算)你選擇出的必須工具是                   ;需要測量的數(shù)據(jù)是                                        



【小題1】(1)設(shè)旗桿的高度ABx米.
由題意可得,△ABE∽△CDF.………………2分
所以=.………………4分
因為CD=1.6米,CF=1.2米,AE=9米,
所以=.
解得x=12米.……………………7分
答:旗桿的高度為12米
【小題2】(2)示意圖如圖,答案不唯一;…………10分
卷尺、測角儀;角α(∠MPN)、β(∠MQN)的   
度數(shù)和PQ的長度

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分)
【小題1】(1)學(xué)習(xí)《測量建筑物的高度》后,小明帶著卷尺、標桿,利用太陽光去測量旗桿的高度.參考示意圖1,他的測量方案如下:

第一步,測量數(shù)據(jù).測出CD=1.6米,CF=1.2米, AE=9米.
第二步,計算.
請你依據(jù)小明的測量方案計算出旗桿的高度.
【小題2】(2) 如圖2,校園內(nèi)旗桿周圍有護欄,下面有底 座.現(xiàn)在有卷尺、 標桿、平面鏡、測角儀等工具,請你選擇出必須的工具,設(shè)計一個測量方案以求出旗桿頂端到地面的距離.要求:在備用圖中畫出示意圖,說明需要測量的數(shù)據(jù).(注意不能到達底部點N對完成測量任務(wù)的影響,不需計算)你選擇出的必須工具是                   ;需要測量的數(shù)據(jù)是                                        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省無錫市惠山區(qū)七年級下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

將下列各式因式分解:(本題有4小題,每小題3分,共12分)
【小題1】(1)    【小題2】 (2)
【小題3】(3)           【小題4】 (4)                               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省洋思中學(xué)九年級月考數(shù)學(xué)卷 題型:解答題

( 本題滿分12分)
【小題1】(1)動手操作:
如圖①,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點處,折痕為EF,若∠ABE=20°,那么的度數(shù)為        

【小題2】(2)觀察發(fā)現(xiàn)小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認為△AEF是等腰三角形,你同意嗎?請說明理由

(3)實踐與運用:
將矩形紙片ABCD 按如下步驟操作:將紙片對折得折痕EF,折痕與AD邊交于點E,與BC邊交于點F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點A、點D都與點F重合,展開紙片,此時恰好有MP=MN=PQ(如圖④),求∠MNF的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省啟東市東海中學(xué)九年級寒假作業(yè)檢測數(shù)學(xué)卷 題型:解答題

(本題滿分12分)
【小題1】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB
=∠MAE.
(下面請你完成余下的證明過程)

【小題2】(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

【小題3】(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當∠AMN=        °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

同步練習(xí)冊答案