(2005•中原區(qū))已知關(guān)于x的一元二次方程x2+k(x-1)-1=0
(1)求證:無論k取何值,這個方程總有兩個實數(shù)根;
(2)是否存在正數(shù)k,使方程的兩個實數(shù)根x1,x2滿足x12+kx1+2x1x2=7-3(x1+x2)?若存在,試求出k的值;若不存在,請說明理由.
【答案】分析:(1)求證無論k取何值,這個方程總有兩個實數(shù)根,即是證明方程的判別式△≥0即可;
(2)本題是對根的判別式與根與系數(shù)關(guān)系的綜合考查,兩根之和等于-,兩根之積等于
x12+kx1+2x1x2=7-3(x1+x2),即可用k的式子進行表示,求得k的值,然后判斷是否滿足實際意義即可.
解答:解:(1)方程x2+k(x-1)-1=0可化為x2+kx-k-1=0,
由于△=k2+4k+4=(k+2)2≥0,
所以方程有兩個實數(shù)根.

(2)假設(shè)存在正數(shù)k,滿足x12+kx1+2x1x2=7-3(x1+x2),
由于x1,x2是方程的兩個實數(shù)根,
∴把x=x1代入得:x12+kx1-k-1=0,
∴x12+kx1=k+1,x1+x2=-k,x1x2=-k-1,
即k+1+2(-k-1)=7+3k,
解得k=-2,這與題設(shè)k>0相矛盾.
∴滿足條件的正數(shù)k不存在.
點評:本題在求解的過程中應(yīng)用了反證法,先假設(shè)成立,然后推出矛盾,證明假設(shè)的不成立.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《三角形》(08)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一元二次方程》(07)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

同步練習冊答案