(1)教材在探索平方差公式時(shí)利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱“無(wú)字證明”,例如,著名的趙爽弦圖(如圖①,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為a,較小的直角邊長(zhǎng)都為b,斜邊長(zhǎng)都為c),大正方形的面積可以表示為c2,也可以表示為
1
2
ab+(a-b)2
由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長(zhǎng)為a,b,斜邊長(zhǎng)為c,則a2+b2=c2.圖②為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你利用圖②推導(dǎo)勾股定理.

(2)試用勾股定理解決以下問(wèn)題:
如果直角三角形ABC的兩直角邊長(zhǎng)為3和4,則斜邊上的高為
12
5
12
5

(3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋(a-2b)2=a2-4ab+4b2,畫在下面的網(wǎng)格中,并標(biāo)出字母a、b所表示的線段.
分析:(1)梯形的面積可以由梯形的面積公式求出,也利用三個(gè)直角三角形面積求出,兩次求出的面積相等列出關(guān)系式,化簡(jiǎn)即可得證;
(2)由兩直角邊,利用勾股定理求出斜邊長(zhǎng),再利用面積法即可求出斜邊上的高;
(3)已知圖形面積的表達(dá)式,即可根據(jù)表達(dá)式得出圖形的邊長(zhǎng)的表達(dá)式,即可畫出圖形.
解答:解:(1)梯形ABCD的面積為
1
2
(a+b)(a+b)=
1
2
a2+ab+
1
2
b2,
也利用表示為
1
2
ab+
1
2
c2+
1
2
ab,
1
2
a2+ab+
1
2
b2=
1
2
ab+
1
2
c2+
1
2
ab,即a2+b2=c2;

(2)∵直角三角形的兩直角邊分別為3,4,
∴斜邊為5,
∵設(shè)斜邊上的高為h,直角三角形的面積為
1
2
×3×4=
1
2
×5×h,
∴h=
12
5
;

(3)∵圖形面積為:(a-2b)2=a2-4ab+4b2,
∴邊長(zhǎng)為a-2b,
由此可畫出的圖形為:

故答案為:(2)
12
5
點(diǎn)評(píng):此題考查了勾股定理的證明,勾股定理,多項(xiàng)式的乘法的運(yùn)用以及由多項(xiàng)式畫圖形的創(chuàng)新題型,此類證明要轉(zhuǎn)化成同一個(gè)東西的兩種表示方法,從而轉(zhuǎn)化成方程達(dá)到證明的結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

教材第66頁(yè)探索平方差公式時(shí)設(shè)置了如下情境:邊長(zhǎng)為b的小正方形紙片放置在邊長(zhǎng)為a的大正方形紙片上(如圖①),你能通過(guò)計(jì)算未蓋住部分的面積得到公式(a+b)(a-b)=a2-b2嗎?(不必證明)

(1)如果將小正方形的一邊延長(zhǎng)(如圖②),是否也能推導(dǎo)公式?請(qǐng)完成證明.
(2)面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱“無(wú)字證明”,例如,著名的趙爽弦圖(如圖③,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為a,較小的直角邊長(zhǎng)都為b,斜邊長(zhǎng)都為c),大正方形的面積可以表示為c2,也可以表示為4×
12
ab+(a-b)2,由此推導(dǎo)出重要的勾股定理:a2+b2=c2.圖④為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你完成證明.
(3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋(a-2b)2=a2-4ab+4b2,畫在下面的網(wǎng)格(圖⑤)中,并標(biāo)出字母a、b所表示的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省太倉(cāng)市七年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

教材第66頁(yè)探索平方差公式時(shí)設(shè)置了如下情境:邊長(zhǎng)為b的小正方形紙片放置在邊長(zhǎng)為a的
大正方形紙片上(如圖9?6),你能通過(guò)計(jì)算未蓋住部分的面積得到公式(a + b) (a ? b) = a2? b2嗎?
(不必證明)
(1)如果將小正方形的一邊延長(zhǎng)(如圖①),是否也能推導(dǎo)公式?請(qǐng)完成證明.

(2) 面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱“無(wú)字證明”.例如,著名的趙爽弦圖(如圖②,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為a,較小的直角邊長(zhǎng)都為b,斜邊長(zhǎng)都為c),大正方形的面積可以表示為c2,也可以表示為4´ab + (a ? b)2,由此推導(dǎo)出重要的勾股定理:a2 + b2 = c2
圖③為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你完成證明.

(3) 試構(gòu)造一個(gè)圖形,使它的面積能夠解釋(a ? 2b)2 = a2? 4ab + 4b2,畫在下面的格點(diǎn)中,并標(biāo)出字母a、b所表示的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)教材在探索平方差公式時(shí)利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱“無(wú)字證明”,例如,著名的趙爽弦圖(如圖①,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為a,較小的直角邊長(zhǎng)都為b,斜邊長(zhǎng)都為c),大正方形的面積可以表示為c2,也可以表示為數(shù)學(xué)公式由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長(zhǎng)為a,b,斜邊長(zhǎng)為c,則a2+b2=c2.圖②為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你利用圖②推導(dǎo)勾股定理.

(2)試用勾股定理解決以下問(wèn)題:
如果直角三角形ABC的兩直角邊長(zhǎng)為3和4,則斜邊上的高為_(kāi)_____
(3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋(a-2b)2=a2-4ab+4b2,畫在下面的網(wǎng)格中,并標(biāo)出字母a、b所表示的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26.(1)教材在探索平方差公式時(shí)利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱“無(wú)字證明”,例如,著名的趙爽弦圖(如圖①,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為a,較小的直角邊長(zhǎng)都為b,斜邊長(zhǎng)都為c),大正方形的面積可以表示為c2,也可以表示為由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長(zhǎng)為a,b,斜邊長(zhǎng)為c,則a2+b2=c2.圖②為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你利用圖②推導(dǎo)勾股定理.

(2)試用勾股定理解決以下問(wèn)題:

如果直角三角形ABC的兩直角邊長(zhǎng)為3和4,則斜邊上的高為  

(3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋(a﹣2b)2=a2﹣4ab+4b2,畫在下面的網(wǎng)格中,并標(biāo)出字母a、b所表示的線段.

查看答案和解析>>

同步練習(xí)冊(cè)答案