18.把下列各式分解因式.
(1)-24ab2+12a2b+6ab
(2)6m(n-m)2-2(m-n)3

分析 (1)直接找出公因式-6ab,進而提取公因式得出答案;
(2)直接找出公因式2(m-n)2,進而提取公因式得出答案.

解答 解:(1)-24ab2+12a2b+6ab
=-6ab(4b-2a+1);

(2)6m(n-m)2-2(m-n)3
=2(m-n)2[3m-(m-n)]
=2(m-n)2(2m+n).

點評 此題主要考查了提取公因式法分解因式,正確找出公因式是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.計算
(1)-5+(-8)-(+2)
(2)1-(-2)÷$\frac{1}{3}$×3
(3)4×(-3)2-15÷(-3)-50
(4)-32+5×(-$\frac{8}{5}$)-(-4)2÷(-8).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.先化簡再求值:
(1)3x2y-[2xy2-2(xy-$\frac{3}{2}$x2y)+xy]+3xy2,其中x=3,y=-$\frac{1}{3}$.
(2)已知xy=-2,x+y=3,求整式(3xy+10y)+[5x-(2xy+2y-3x)]的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.觀察下列等式:
第1個等式:a1=$\frac{1}{1×3}$=$\frac{1}{2}$×(1-$\frac{1}{3}$);
第2個等式:a2=$\frac{1}{3×5}$=$\frac{1}{2}$×($\frac{1}{3}$-$\frac{1}{5}$);
第3個等式:a3=$\frac{1}{5×7}$=$\frac{1}{2}$×($\frac{1}{5}$-$\frac{1}{7}$);
第4個等式:a4=$\frac{1}{7×9}$=$\frac{1}{2}$×($\frac{1}{7}$-$\frac{1}{9}$)…
請解答下列問題:
(1)用含有n(n為正整數(shù))的式子表示第n個等式;
(2)求a1+a2+a3+a4+…+a100的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖,等腰三角形ABC中,AB=AC,AD平分∠BAC,點E是線段BC延長線上一點,連接AE,點C在AE的垂直平分線上,若DE=10cm,則△ABC的周長等于20cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.計算
(1)2a5•(-a)2-(-a23•(-7a)
(2)($\frac{1}{2}$x2y-2xy+y2)•3xy.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.如圖,拋物線y=x2-x-6交x軸于A、C兩點,交y軸于點B;將拋物線y=x2-x-6向上平移$\frac{23}{4}$個單位長度、再向左平移m(m>0)個單位長度,得到新拋物線;若新拋物線的頂點P在△ABC內(nèi),則m的取值范圍是0<m$<\frac{7}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.計算:2$\sqrt{12}$×$\frac{\sqrt{3}}{4}$-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.與2+$\sqrt{6}$最接近的正整數(shù)是4.

查看答案和解析>>

同步練習(xí)冊答案