精英家教網 > 初中數學 > 題目詳情
已知:AC是⊙O的直徑,PA⊥AC,連結OP,弦CB//OP,直線PB交直線AC于點D,BD=2PA.
【小題1】證明:直線PB是⊙O的切線;
【小題2】探索線段PO與線段BC之間的數量關系,并加以證明;
【小題3】求sin∠OPA的值.

【小題1】連結OB.∵BC//OP,      ∴∠BCO=∠POA,∠CBO=∠POB.
又∵OC=OB,∴∠BCO=∠CBO,   ∴∠POB=∠POA.
又∵PO=PO,OB=OA,           ∴△POB≌△POA.
∴∠PBO=∠PAO=90°.          ∴PB是⊙O的切線.
【小題1】2PO=3BC(寫PO=BC亦可).
證明:∵△POB≌△POA,∴PB=PA.
∵BD=2PA,∴BD=2PB.
∵BC//OP,∴△DBC∽△DPO.
.∴2PO=3BC.
注:開始沒有寫出判斷結論,正確證明也給滿分.

【小題1】∵△DBC∽△DPO,∴,即DC=OD.∴DC=2OC.
設OA=x,PA=y.則OD=3x,DB=2y.
在Rt△OBD中,由勾股定理,得(3x)2= x2+(2y)2.即2 x2= y2
∵x>0,y>0,∴y=x.OP=
∴sin∠OPA=.解析:
根據切線定理證明圓的切線,有關計算的依據是三角形相似和勾股定理。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內的點A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應的一次函數的解析式以及它與x軸的交點E的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知△ABC是等邊三角形,點D是射線BC上一動點(直D不與B、C重合),以AD為邊在AD的左側作等邊△ADE,過點E作BC的平行線交射線AB、AC于點F、G.
(1)當點D在線段BC上運動時,判斷四邊形BCGE是什么四邊形?說明理由;
(2)當點D在線段BC的延長線上運動時,(1)中的兩個結論還成立嗎?
(3)當點D在什么位置時,四邊形BCGE是菱形?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標;若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側作正方形QEFG.設AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數關系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在平面直角坐標系中,直數學公式與雙曲線數學公式相交于第一象限內的點A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應的一次函數的解析式以及它與x軸的交點E的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年西藏中考數學模擬試卷(二)(解析版) 題型:解答題

如圖,在平面直角坐標系中,直與雙曲線相交于第一象限內的點A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應的一次函數的解析式以及它與x軸的交點E的坐標.

查看答案和解析>>

同步練習冊答案