某海濱浴場的沿岸可以看作直線,如圖示直線AD,1號救生員在岸邊的A點看到海中的B點有人求救,便立即向前跑300米到離B點最近的D點,再跳入海中游到B點救助;若每位救生員在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.若2號救生員從A跑到C,再跳入海中游到B點救助,且∠BCD=65°,請問誰先到達點B?(所有數(shù)據(jù)精確到0.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2,數(shù)學公式≈1.4)

解:根據(jù)已知條件可以計算出AD=300,BD=300.
所以1號所用的時間為300÷6+300÷2=200(秒)
BC=300÷0.9≈333,CD=150,所以AC=150,
2號所用時間為150÷6+333÷2≈25+167=192(秒),
所以2號先到達B點.
分析:比較哪個比較合理,只要計算出兩為救生員所用的時間就可以比較得到.
點評:本題是用數(shù)學知識解決實際問題,屬于簡單的運用,正確建模是解決問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

某海濱浴場的沿岸可以看作直線,如圖所示,1號救生員在岸邊的A點看到海中的B點有人求救,便立即向前跑300米到離B點最近的D點,再跳入海中游到B點救助,若每位救生員在精英家教網(wǎng)岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.
(1)請問1號救生員救生員的做法是否合理?
(2)若2號救生員從A跑到C,再跳入海中游到B點救助,且∠BCD=65°,請問誰先到達點B?(所有數(shù)據(jù)精確到0.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2,
2
≈1.4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)某海濱浴場的沿岸可以看作直線,如圖示直線AD,1號救生員在岸邊的A點看到海中的B點有人求救,便立即向前跑300米到離B點最近的D點,再跳入海中游到B點救助;若每位救生員在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.若2號救生員從A跑到C,再跳入海中游到B點救助,且∠BCD=65°,請問誰先到達點B?(所有數(shù)據(jù)精確到0.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2,
2
≈1.4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某海濱浴場的沿岸可以看作直線,如圖所示,1號救生員在岸邊的A點看到海中的B點有人求救,便立即向前跑300米到離B點最近的D點,再跳入海中游到B點救助;若2號救生員從A跑到C,再跳入海中游到B點救助,且∠BCD=60°,且每位救生員在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.請你通過計算說明兩位救生員誰先到達點B?

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《解直角三角形》中考題集(41):1.5 解直角三角形的應用(解析版) 題型:解答題

某海濱浴場的沿岸可以看作直線,如圖所示,1號救生員在岸邊的A點看到海中的B點有人求救,便立即向前跑300米到離B點最近的D點,再跳入海中游到B點救助,若每位救生員在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.
(1)請問1號救生員救生員的做法是否合理?
(2)若2號救生員從A跑到C,再跳入海中游到B點救助,且∠BCD=65°,請問誰先到達點B?(所有數(shù)據(jù)精確到0.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2,≈1.4)

查看答案和解析>>

同步練習冊答案