【題目】為拓寬學生視野,促進書本知識和生活經(jīng)驗的深度融合,我市某中學決定組織部分班級開展研學旅行活動,在參加此次活動的師生中,若每位老師帶名學生,還剩名學生沒人帶;若每位老師帶名學生,則有一位老師少帶名學生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.
甲種客車 | 已和客車 | |
載客量(人/量) | ||
租金(元/輛) |
學校計劃此次研學旅行活動的租車總費用不超過元,為了安全,每輛客車上至少要有名老師.
(1)參加此次研學旅行活動的老師和學生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有名老師,可求得租用客車總數(shù)為______輛.
(3)在(2)的條件下,你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.
【答案】(1)老師有16人,學生有284人;(2)8;(3)有三種租車方案:方案一:租甲種客車1輛,乙種客車7輛,租車費用為1×300+7×400=3100(元).方案二:租甲種客車2輛,乙種客車6輛,租車費用為2×300+6×400=3000(元).方案三:租甲種客車3輛,乙種客車5輛,租車費用為3×300+5×400=2900(元).租甲種客車3輛,乙種客車5輛最省錢
【解析】
(1)設出老師有x名,學生有y名,得出二元一次方程組,解出即可;
(2)設租用客車輛,根據(jù)題意得到不等式組即可求出;
(3)設租用m輛乙種客車,則甲種客車數(shù)為:(8m)輛,由題意得出400m+300(mx)≤3100,得出m的取值范圍,分析得出即可.
(1)設老師有人,學生有人.
根據(jù)題意得
解得
答:老師有16人,學生有284人.
(2)設租用客車輛.
根據(jù)題意得
解得.
∵是整數(shù),
∴.
∴租用客車總數(shù)是8輛
故答案為:8.
(3)設租用甲種客車輛,則租用乙種客車輛.
根據(jù)題意得
解得.
∵是整數(shù),. .
∴有三種租車方案:
方案一:租甲種客車1輛,乙種客車7輛,租車費用為1×300+7×400=3100(元).
方案二:租甲種客車2輛,乙種客車6輛,租車費用為2×300+6×400=3000(元).
方案三:租甲種客車3輛,乙種客車5輛,租車費用為3×300+5×400=2900(元).
租甲種客車3輛,乙種客車5輛最省錢.
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,∠ABD=90°,延長AB至點E,使BE=AB,連接CE.
(1)求證:四邊形BECD是矩形;
(2)連接DE交BC于點F,連接AF,若CE=2,∠DAB=30°,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=x+3與兩坐標軸交于A、B兩點,以AB為斜邊在第二象限內作等腰Rt△ABC,反比例函數(shù)y=(x<0)的圖象過點C,則m=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請寫出三條與上述拋物線有關的不同類型的結論;
(2)當a=時,設y1=-ax2-ax+1與x軸分別交于M,N兩點(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F兩點(E在F的左邊),觀察M,N,E,F四點坐標,請寫出一個你所得到的正確結論,并說明理由;
(3)設上述兩條拋物線相交于A,B兩點,直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點,l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點,求線段CD的最大值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知菱形ABCD中,對角線AC、BD相交于點O,且AC=12cm,BD=16cm,點P從點D出發(fā),沿DA方向勻速向點A運動,速度為2cm/s;同時,點E從點B出發(fā),沿BO方向勻速向點O運動,速度為1cm/s,EF∥BC,交OC于點F.當點P、E中有一點停止運動時,另一點也停止運動,線段EF也停止運動,連接PE、DF(0<t<5).解答下列問題:
(1)當t為何值時,PE∥AB?
(2)設四邊形EFDP的面積為y(),求y與t之間的函數(shù)關系式.
(3)是否存在某一時刻t,使得?若存在,求出t的值;若不存在,請說明理由.
(4)連接FP,是否存在某一時刻t,使得FP⊥AD?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球
B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知C(3,4),以點C為圓心的圓與y軸相切.點A、B在x軸上,且OA=OB.點P為⊙C上的動點,∠APB=90°,則AB長度的最小值為( 。
A.4B.3C.7D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為深化課程改革,提高學生的綜合素質,我校開設了形式多樣的校本課程.為了解校本課程在學生中最受歡迎的程度,學校隨機抽取了部分學生進行調查,從A:天文地理;B:科學探究;C:文史天地;D:趣味數(shù)學;四門課程中選你喜歡的課程(被調查者限選一項),并將調查結果繪制成兩個不完整的統(tǒng)計圖,如圖所示,根據(jù)以上信息,解答下列問題:
(1)本次調查的總人數(shù)為 人,扇形統(tǒng)計圖中A部分的圓心角是 度;
(2)請補全條形統(tǒng)計圖;
(3)根據(jù)本次調查,該校400名學生中,估計最喜歡“科學探究”的學生人數(shù)為多少?
(4)為激發(fā)學生的學習熱情,學校決定舉辦學生綜合素質大賽,采取“雙人同行,合作共進”小組賽形式,比賽題目從上面四個類型的校本課程中產(chǎn)生,并且規(guī)定:同一小組的兩名同學的題目類型不能相同,且每人只能抽取一次,小琳和小金組成了一組,求他們抽到“天文地理”和“趣味數(shù)學”類題目的概率是多少?(請用畫樹狀圖或列表的方法求)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com