如圖:在等腰△ABC中,∠C=90º,AC=6,D 是AC上一點,若tan∠DBA=,則A D的長為(  ) 
  

A.B.2C.1D.2

B

解析考點:解直角三角形.
專題:計算題.
分析:作DE⊥AB,構造直角三角形,根據(jù)角的正弦值與三角形邊的關系,可求出各邊的長.解答:解:作DE⊥AB于E點.
∵tan∠DBA= =
∴BE=5DE,
∵△ABC為等腰直角三角形,
∴∠A=45°,
∴AE=DE.
∴BE=5AE,
又∵AC=6,
∴AB=6 .
∴AE+BE=5AE+AE=6 ,
∴AE=  ,
∴在等腰直角△ADE中,由勾股定理,得AD=  AE=2.
故選B.
點評:此題的關鍵是作輔助線,構造直角三角形,運用三角函數(shù)的定義建立關系式然后求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,BE⊥AC,垂足為E,則∠1與∠A的關系式為( 。
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,AB的垂直平分線DE交AB于點D,交另一腰AC于點E,若∠EBC=15°,則∠A=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,在等腰△ABC中,AB=AC,∠ABC=α,在四邊形BDEC中,DB=DE,∠BDE=2α,M為CE的中點,連接AM,DM.
(1)在圖中畫出△DEM關于點M成中心對稱的圖形;
(2)求證AM⊥DM;
(3)當α=
45°
,AM=DM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•麗水)如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是
50°
50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點.若BC=8cm,則△BCE的周長是
18
18
cm.

查看答案和解析>>

同步練習冊答案