【題目】如圖,在△ABC中,AB=BC,點(diǎn)D在AB的延長(zhǎng)線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫(xiě)作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長(zhǎng)AE交BM于點(diǎn)F.
(2)由(1)得:BF與邊AC的位置關(guān)系是 .
【答案】
(1)解:①如圖所示:BM即為所求;
②如圖所示:AF即為所求
(2)BF∥AC
【解析】解:(2)∵AB=BC, ∴∠CAB=∠C,
∵∠C+∠CAB=∠CBD,∠CBM=∠MBD,
∴∠C=∠CBM,
∴BF∥AC.
【考點(diǎn)精析】利用三角形的外角和等腰三角形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知三角形一邊與另一邊的延長(zhǎng)線組成的角,叫三角形的外角;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某青年旅社有60間客房供游客居住,在旅游旺季,當(dāng)客房的定價(jià)為每天200元時(shí),所有客房都可以住滿.客房定價(jià)每提高10元,就會(huì)有1個(gè)客房空閑,對(duì)有游客入住的客房,旅社還需要對(duì)每個(gè)房間支出20元/每天的維護(hù)費(fèi)用,設(shè)每間客房的定價(jià)提高了x元.
(1)填表(不需化簡(jiǎn))
入住的房間數(shù)量 | 房間價(jià)格 | 總維護(hù)費(fèi)用 | |
提價(jià)前 | 60 | 200 | 60×20 |
提價(jià)后 |
|
|
|
(2)若該青年旅社希望每天純收入為14000元且能吸引更多的游客,則每間客房的定價(jià)應(yīng)為多少元?(純收入=總收入﹣維護(hù)費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)“蛟龍”號(hào)深潛器目前最大深潛極限為7062.68米.某天該深潛器在海面下1800米的A點(diǎn)處作業(yè)(如圖),測(cè)得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點(diǎn),此時(shí)測(cè)得海底沉船C的俯角為60°.
(1)沉船C是否在“蛟龍”號(hào)深潛極限范圍內(nèi)?并說(shuō)明理由;
(2)由于海流原因,“蛟龍”號(hào)需在B點(diǎn)處馬上上浮,若平均垂直上浮速度為2000米/時(shí),求“蛟龍”號(hào)上浮回到海面的時(shí)間.(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,分析下列四個(gè)結(jié)論: ①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2 ,
其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD.若AD=4,BC=6,則梯形ABCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是對(duì)角線AC上一點(diǎn),且CE=CD,過(guò)點(diǎn)E作EF⊥AC交AD于點(diǎn)F,連接BE.
(1)求證:DF=AE;
(2)當(dāng)AB=2時(shí),求BE2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算: ﹣( )﹣1+(π﹣ )0﹣(﹣1)100;
(2)已知|a+1|+(b﹣3)2=0,求代數(shù)式( ﹣ )÷ 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà)弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長(zhǎng);
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com