已知如圖,在矩形ABCD中,AE⊥BD,垂足為E,∠ADB=30°且BC=4,則△ECD的面積為________.

2
分析:易證Rt△ABE≌Rt△CDF可得AE=CF,即可得S△ADE=S△CDE,根據(jù)勾股定理可以求得BF、FC的值,即可求得△ECD的面積,即可解題.
解答:解:過C點作CF⊥BD于F,
∵∠AEB=∠CFD,∠ABE=∠CDF,AB=CD,
∴Rt△ABE≌Rt△CDF,
得AE=CF,
∴S△ADE=S△ECD,
∵∠ADB=30°,BC=4,
∴AE=BC=2,
∴BF=AE=2,
∴S△ADE=×BF×FC=2
故△ECD的面積為2,
故答案為 2
點評:本題考查了勾股定理在直角三角形中的運用,考查了全等三角形的證明和全等三角形對應(yīng)邊相等的性質(zhì),本題中計算BF、FC的值是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,在矩形ABCD中,AB=12cm,BC=6cm,點E自A點出發(fā),以每秒1cm的速度向D點前進,同時點F從D點以每秒2cm的速度向C點前進,若移動的時間為t,且0≤t≤6.
(1)當t為多少時,DE=2DF;
(2)四邊形DEBF的面積是否為定值?若是定值,請求出定值;若不是定值,請說明理由.
(3)以點D、E、F為頂點的三角形能否與△BCD相似?若能,請求出所有可能的t的值;精英家教網(wǎng)若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的性質(zhì)(帶解析) 題型:解答題

已知如圖,在矩形ABCD中,AB=12cm,BC=6cm,點E自A點出發(fā),以每秒1cm的速度向D點前進,同時點F從D點以每秒2cm的速度向C點前進,若移動的時間為t,且0≤t≤6.
(1)當t為多少時,DE=2DF;
(2)四邊形DEBF的面積是否為定值?若是定值,請求出定值;若不是定值,請說明理由.
(3)以點D、E、F為頂點的三角形能否與△BCD相似?若能,請求出所有可能的t的值;若不能,請說明理由.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的性質(zhì)(解析版) 題型:解答題

已知如圖,在矩形ABCD中,AB=12cm,BC=6cm,點E自A點出發(fā),以每秒1cm的速度向D點前進,同時點F從D點以每秒2cm的速度向C點前進,若移動的時間為t,且0≤t≤6.

(1)當t為多少時,DE=2DF;

(2)四邊形DEBF的面積是否為定值?若是定值,請求出定值;若不是定值,請說明理由.

(3)以點D、E、F為頂點的三角形能否與△BCD相似?若能,請求出所有可能的t的值;若不能,請說明理由.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知如圖,在矩形ABCD中,AB=12cm,BC=6cm,點E自A點出發(fā),以每秒1cm的速度向D點前進,同時點F從D點以每秒2cm的速度向C點前進,若移動的時間為t,且0≤t≤6.
(1)當t為多少時,DE=2DF;
(2)四邊形DEBF的面積是否為定值?若是定值,請求出定值;若不是定值,請說明理由.
(3)以點D、E、F為頂點的三角形能否與△BCD相似?若能,請求出所有可能的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年福建省廈門市一中海滄附屬學(xué)校九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知如圖,在矩形ABCD中,AB=12cm,BC=6cm,點E自A點出發(fā),以每秒1cm的速度向D點前進,同時點F從D點以每秒2cm的速度向C點前進,若移動的時間為t,且0≤t≤6.
(1)當t為多少時,DE=2DF;
(2)四邊形DEBF的面積是否為定值?若是定值,請求出定值;若不是定值,請說明理由.
(3)以點D、E、F為頂點的三角形能否與△BCD相似?若能,請求出所有可能的t的值;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案