【題目】如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)D作DE⊥BC于點(diǎn)E,且∠BDE=∠A.
(1)判斷DE與⊙O的位置關(guān)系并說明理由;
(2)若AC=16,tanA=,求⊙O的半徑.
【答案】(1)DE與⊙O相切.理由見解析;(2)5.
【解析】試題分析:(1)連接DO,BD,如圖,由于∠BDE=∠A,∠A=∠ADO,則∠ADO=∠EDB,再根據(jù)圓周角定理得∠ADB=90°,所以∠ADO+∠ODB=90°,于是得到∠ODB+∠EDB=90°,然后根據(jù)切線的判定定理可判斷DE為⊙O的切線;
(2)利用等角的余角相等得∠ABD=∠EBD,加上BD⊥AC,根據(jù)等腰三角形的判定方法得△ABC為等腰三角形,所以AD=CD=AC=8,然后在Rt△ABD中利用正切定義可計(jì)算出BD=6,再根據(jù)勾股定理計(jì)算出AB,從而得到⊙O的半徑.
試題解析:(1)DE與⊙O相切.理由如下:
連接DO,BD,如圖,
∵∠BDE=∠A,∠A=∠ADO,
∴∠ADO=∠EDB,
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ODB+∠EDB=90°,即∠ODE=90°,
∴OD⊥DE,
∴DE為⊙O的切線;
(2)∵∠BDE=∠A,
∴∠ABD=∠EBD,
而BD⊥AC,
∴△ABC為等腰三角形,
∴AD=CD=AC=8,
在Rt△ABD中,
∵tanA=,
∴BD=×8=6,
∴AB==10,
∴⊙O的半徑為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A在x軸負(fù)半軸上,頂點(diǎn)C在x軸正半軸上,頂點(diǎn)B在第一象限,過點(diǎn)B作BD⊥y軸于點(diǎn)D,線段OA,OC的長(zhǎng)是一元二次方程x2-12x+36=0的兩根,BC=4,∠BAC=45°.
(1)求點(diǎn)A,C的坐標(biāo);
(2)反比例函數(shù)y=的圖象經(jīng)過點(diǎn)B,求k的值;
(3)在y軸上是否存在點(diǎn)P,使以P,B,D為頂點(diǎn)的三角形與以P,O,A為頂點(diǎn)的三角形相似?若存在,請(qǐng)寫出滿足條件的點(diǎn)P的個(gè)數(shù),并直接寫出其中兩個(gè)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種面粉的質(zhì)量標(biāo)識(shí)為“26±0.25千克”,則下列面粉中合格的是:( 。
A. 26.30千克 B. 25.70千克 C. 26.51千克 D. 25.80千克
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)你計(jì)算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的結(jié)果是( )
A.1﹣xn+1
B.1+xn+1
C.1﹣xn
D.1+xn
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com