(2008•泰安)函數(shù)y=x+的圖象如圖所示,下列對該函數(shù)性質(zhì)的論斷不可能正確的是( )

A.該函數(shù)的圖象是中心對稱圖形
B.當(dāng)x>0時,該函數(shù)在x=1時取得最小值2
C.在每個象限內(nèi),y的值隨x值的增大而減小
D.y的值不可能為1
【答案】分析:將每個選項代入到圖形中,檢驗正確與否.
解答:解:由圖可得,
該函數(shù)的圖象關(guān)于原點對稱,是中心對稱圖形,故A錯誤;
當(dāng)x>0時,有三種情況:0<x<1時,y的值隨x值的增大而減小,且y>2;x=1時,y=2;x>1時,y>2;故B錯誤;
當(dāng)y的值為1時,可得方程x+=1,△<0,無解,故y的值不可能為1,故D錯誤.
不正確的是C.
故選C.
點評:此題考查了學(xué)生的綜合解題能力,涉及的知識點有:函數(shù)的圖象、一元二次方程等,用了分類討論的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年江蘇省南京市建鄴區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2008•泰安)某市種植某種綠色蔬菜,全部用來出口.為了擴大出口規(guī)模,該市決定對這種蔬菜的種植實行政府補貼,規(guī)定每種植-畝這種蔬菜一次性補貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺補貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補貼政策實施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市贛榆縣外國語學(xué)校中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2008•泰安)某市種植某種綠色蔬菜,全部用來出口.為了擴大出口規(guī)模,該市決定對這種蔬菜的種植實行政府補貼,規(guī)定每種植-畝這種蔬菜一次性補貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺補貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補貼政策實施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省深圳市初中畢業(yè)模擬試卷(解析版) 題型:解答題

(2008•泰安)某市種植某種綠色蔬菜,全部用來出口.為了擴大出口規(guī)模,該市決定對這種蔬菜的種植實行政府補貼,規(guī)定每種植-畝這種蔬菜一次性補貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺補貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補貼政策實施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識》(01)(解析版) 題型:選擇題

(2008•泰安)函數(shù)y=x+的圖象如圖所示,下列對該函數(shù)性質(zhì)的論斷不可能正確的是( )

A.該函數(shù)的圖象是中心對稱圖形
B.當(dāng)x>0時,該函數(shù)在x=1時取得最小值2
C.在每個象限內(nèi),y的值隨x值的增大而減小
D.y的值不可能為1

查看答案和解析>>

同步練習(xí)冊答案